

Human Performance Workshop Why Are We Here?

Johnny Gest Manager, Engineering & System Performance

August 5, 2021

LIMITED DISCLOSURE

What is Human Performance?

Drifting to Failure Concept

Forward Together • ReliabilityFirst

LIMITED DISCLOSURE

2016-2020 Outages per Circuit (100 kV+)

Number of transmission outages from ac circuits and transformers caused by human error is decreasing/stable

Figure 3.9: Number of Outages per AC Circuit due to Various Initiating Causes

Figure 3.11: Number of Outages per Transformer Due to Various Initiating Causes

https://www.nerc.com/pa/RAPA/PA/Performance%20Analysis%20DL/NERC_SOR_2020.pdf

Forward Together • ReliabilityFirst

ReliabilityFirst HP Performance

- Number of outages from ac circuits and transformers caused by human error are decreasing
- This trend is also reflected in generation outages and misoperations
- Events caused by human error are minimal

Maximizing Human Performance

We must understand that people will be people! Make it easy for employees to do the right thing. Make it hard for employees to do the wrong thing. Make it so that when they do the wrong thing, it doesn't lead to a catastrophe! Make the system conform to the people, not the other way around!

Create an environment that allows feedback and adaptation!

LIMITED DISCLOSURE

RF Human Performance Community of Excellence

A Community of Excellence (CoE) is a group of people who share an interest or passion for something they do, and learn how to do it better as they interact regularly with other colleagues in their field of expertise.

Intended Audience:

Human Performance Professionals from the ReliabilityFirst entities

LIMITED DISCLOSURE

RF Knowledge Center on Web Site

https://rfirst.org/KnowledgeCenter/Risk%20Analysis/HP/

LIMITED DISCLOSURE

Forward Together • ReliabilityFirst

Technical Talk with RF

Technical Talk with RF is typically scheduled the third Monday of each month 2:00-3:30 p.m. Save the date for our next event, Monday, August 15

No Registration Required

- <u>Calendar Reminder</u>
- <u>Webex Link</u>

The next *Tech Talk* will include guest presentations from **Talen Energy** and **DTE Energy** on their **Internal Control Programs**. Please invite not just compliance personnel, but also Internal Control Champions, and all those associated with designing, developing, implementing, and monitoring internal controls.

Follow us on:

ReliabilityFirstAnnual Reliability and Compliance Workshop

Tuesday, Sept. 27, 1:00 pm – 5:00 pm Wednesday, Sept. 28, 8:00 am – 12:00 pm Location: 3 Summit Park Drive, Suite 530 • Cleveland, OH 44131

The theme of this year's workshop is *Embracing the Transformation*. Our world and industry are evolving at a rapid pace, including the associated risks. The changing generation mix, inverter-based resources, virtualization, cloud computing, extreme weather, plus evolving cyber and physical security threats, all amid a pandemic, impact every aspect of how we perform our jobs to preserve and maintain reliability, resilience, and security. This workshop will help entities and stakeholders gain a deeper understanding of how we can collaboratively mitigate the known risks while anticipating emerging risks.

This event will be a hybrid workshop, meaning that we will host guests both in-person and virtually. The inperson meeting will be limited to 125 RF Registered Entity guests at our newly renovated facility on the 5th floor of our offices. To accommodate as many Registered Entities as possible, we are limiting the in-person attendance to **eight persons** per NCR number. There are no limitations regarding virtual (Webex) registration. Please encourage your coworkers, staff, and stakeholders to sign-up to attend.

REGISTER TODAY -> Eventbrite Registration Link

GRIDSECCON 2022 NERC • E-ISAC • RELIABILITYFIRST

GridSecCon Registration is Open

NERC, the E-ISAC, and ReliabilityFirst are co-hosting the 11th grid security conference on October 18–19, with training opportunities available October 17. Once again, GridSecCon will be held virtually. Registration can be found on the E-ISAC website <u>here</u>, and the agenda is located <u>here</u>.

At GridSecCon 2022 you can participate in:

- World-class training sessions
- Cutting-edge discussions, breakout sessions, and keynotes
- In-depth presentations on emerging cyber and physical threats
- Policy updates, lessons learned, and best practices

This year attendees can optimize their GridSecCon experience and chose breakout sessions from six conference tracks: cyber or physical security, supply chain issues, diversity and inclusion, human performance, and security policy matters.

Follow us on:

We Are All Connected!

These engagements are about building relationships with our stakeholders so we are all successful!

LIMITED DISCLOSURE

Forward Together • ReliabilityFirst

Tell Some Stories!

"STORIES ARE JUST DATA WITH A SOUL."

DR. BRENÉ BROWN - UNIVERSITYOF HOUSTON

LIMITED DISCLOSURE

National Standard of Canada for Psychological Health and Safety in the Workplace

Reliability First 5th Annual Human Performance Workshop August 4 2022

Inquire Inspire Improve

Our Purpose Inspiring hope: our lives depend on it.

Mental Health

What the data is telling us

Mental Health

- A **state of well-being** in which the individual realizes his or her own **abilities**, can **cope** with the normal stresses of life, can **work** productively and fruitfully, and is able to make a **contribution** to his or her community.
- In this positive sense, mental health is the **foundation of well-being and effective functioning** for an individual and for a community.

Mental Health Commission de Commission la santé mentale of Canada du Canada

Mental Health in the U.S.A.

IN 2014, **\$186** BILLION

Was Spent on Health Care Services to Treat Mental Health Disorders.¹

44.7 MILLION

Or 18.3% of US Adults 18 or Older Reported Any Mental Illness **IN 2016.**²

N 2015, 8.8% Aged 18-64 Reported Visiting a Mental Health Provider in the Past 12 Months.³

 Substance Abuse and Mental Health Services Administration. Behavioral Health Spending & Use Accounts, 1986-2014. Rockville, MD: Substance Abuse and Mental Health Services Administration; 2016. HHS publication SMA-16-4975.

2. National Institute of Mental Health. Mental illness website. <u>https://www.nimh.nih.gov/health/statistics/mental-illness.shtml</u>. Accessed July 13, 2018.

 Centers for Disease Control and Prevention. Data table for Figure 16. Health care visits in the past 12 months among children aged 2-17 and adults aged 18 and over, by age and provider type: United States, 1997, 2006, and 2015. <u>https://www.cdc.gov/nchs/data/ hus/2016/fig16.pdf</u>. Accessed July 13, 2018.

Mental Health System

Canada's National Standard

Voluntary Guidance for Psychological Health and Safety in the Workplace

A voluntary framework for creating and sustaining a psychological health and safety system.

Commissioned by the Mental Health Commission of Canada

A workplace that **promotes** worker's psychological well-being and actively works to **prevent** harm to worker psychological health including in negligent, reckless or intentional ways.

PHS in the WORKPLACE

All have a role to play!

5 Pillars to Your Workplace Mental Health Strategy

Programs	Policies	Benefits	Training	Assessment
Workplace awareness campaigns	Accommodation policies	EAP or EFAP STD & LTD leave	Resiliency Mental health	Employee surveys (Guarding Minds @ Work)
Occupational health services department	Return to work plans Employee recognition	Paid leave for medical appointments or	training (e.g. MHFA) Anti-stigma training (e.g. The Working	Interactive Audit Tool
Integrated wellness program	Space for privacy	family obligations	Mind)	Mental Health at Work (Excellence Canada)
Peer support programs	(e.g. quite room)	coverage	workplace	Health risk
Self-help tools		coverage for psychological services	training	assessments

CAN/CSA-Z1003-13/BNQ 9700-803/2013 National Standard of Canada

Psychological health and safety in the workplace —

Prevention, promotion, and guidance to staged implementation

Disponible en français Santé et sécurité psychologiques en milieu de travail — Prévention, promotion et lignes directrices pour une mise en œuvre par étapes

Commissioned by the Mental Health Commission of Canada

Risk Mitigation Process

- Hazard identification
- Hazard elimination
- Risk assessment
- Risk control
- Prioritization

Mental Health - Commission de Commission - la santé mentale of Canada - du Canada

Workplace Factors

Protection of Physical Safety

Psychological Protection

Psychological & Social Support

Management System

Evidence of ROI for WMH Strategy

"Mental health programs are more likely to achieve positive ROI when they support employees along the whole spectrum of mental health, from promotion of well-being to intervention and care, as well as the elimination or reduction of workplace hazards that could psychologically harm an employee."

Call to Action

Take a step toward a psychologically healthy and safe workplace

Commission ní Canada.

ith Commission de n la santé mentale du Canada

Need More Help?

• Visit the <u>MHCC website</u> for more info and links to helpful resources

- <u>Book a webinar or training for your workplace</u>
- <u>Contact us</u> to discuss your support needs or to schedule an internal PHS audit

©Mental Health Commission of Canada, 202

Thank you

Liz Horvath Manager, Workplace Mental Health <u>Ihorvath@mentalhealthcommission.ca</u>

Inquire Inspire Improve

Human Performance– Emerging Threats to the BES (CIP)

David Sopata Principal Reliability Consultant

August 4, 2022

Limited Disclosure

A little bit about me

David Sopata, CISA, CISSP, GIAC GRID Principal Reliability Consultant, Entity Engagement, ReliabilityFirst

David joined ReliabilityFirst in 2012, and has participated in appraisal engagements, leads and participates in certification reviews, participates in outreach efforts such as assist visits, and provides guidance to entities in CIP compliance, internal controls and helps in the development of maturity models and security assessment tools. David was a CIP Auditor until 2014, where he participated in and led multiple NERC CIP audits, helped in developing the appraisal model, and participated in the first early appraisal assessment pilots. David previously worked at a security consulting firm for 4 years and has several cybersecurity and auditing certifications. David holds a Bachelors degree in Information Security.

Agenda

IEEE-NERC Security Integration Project

- How to define threat and how does it relate to risk and vulnerabilities?
- > Current tools to help communicate threat and threat groups
- Discussion of different threats that are affecting common IT and OT/ICS systems
- Potential ways of operationalizing threat information to help with incident response

IEEE-NERC Security Integration Project Overview

- Integrating security and engineering practices
- Identified by both NERC and IEEE PES leaderships as a high priority topic
- Fast-track project sponsored by IEEE technical committees and NERC created to publish report by Q4 2022

Forward Together • ReliabilityFirst

What is Threat?

Knowing the difference between risk, threat, and vulnerability can be very challenging as people within industry and cybersecurity use these interchangeably.

• Risk

- "is the potential for loss, damage or destruction of assets or data caused by a cyber threat."
- Vulnerability
 - "a weakness in your infrastructure, networks or applications that potentially exposes you to threats."
- Threat
 - "is a process that magnifies the likelihood of a negative event, such as the exploit of a vulnerability."

Limited Disclosure

Relationship of Threat in GRC

Forward Together • ReliabilityFirst

Preparing for the Future through the Past

- Threat Analysis and Threat Intelligence is based off information from the past to help us prepare for a future potential incident
- Threat Information sharing through organizations like the E-ISAC and other sources helps the industry work on fresh, applicable, and actionable information
- Organizations prepare for an incident by having good incident response plans, collection capabilities, tools, and playbooks to analyze and act upon this information during and after an incident

MODELS FOR COMMUNICATING THREAT

Forward Together • ReliabilityFirst

Value, Maturity Scale and Pyramid of Pain

Forward Together • ReliabilityFirst

ICS Cyber Kill Chain

- The original Cyber Kill Chain was developed by Lockheed Martin to be able to better communicate the stages an advisory would take during an attack campaign.
- In 2015, SANS came out with an updated version specific for ICS environments creating a stage 1 (this follows the original would equate compromising the Entity's Corporate Environment) and stage 2 where material attacks on the ICS environment actually take place (this would equate to compromising the EMS/GMS, Substation, generation plant, etc.).

Figure 1. Stage 1: Cyber Intrusion Preparation and Execution

Figure 2. Stage 2: ICS Attack Development and Execution

Limited Disclosure

https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/LM-White-Paper-Intel-Driven-Defense.pdf Forward Together • ReliabilityFirst

Enterprise and ICS MITRE ATT&CK®

SANDWORM Stage 1 Capability (Enterprise MITRE ATT&CK® Framework)

Black Energy											
Initial Access	Execution	Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery	Lateral Movement	Collection	Command And Control	Exfiltration	Impact
Drive-by Compromise	AppleScript	.bash_profile and .bashrc	Access Token Manipulation	Access Token Manipulation	Account Manipulation	Account Discovery	AppleScript	Audio Capture	Commonly Used Port	Automated Exfiltration	Account Access Removal
Exploit Public-Facing						Application Window	Application Deployment		Communication Through		
Application	CMSTP	Accessibility Features	Accessibility Features	Binary Padding	Bash History	Discovery	Software	Automated Collection	Removable Media	Data Compressed	Data Destruction
						Browser Bookmark	Component Object Model				
External Remote Services	Command-Line Interface	Account Manipulation	AppCert DLLs	BITS Jobs	Brute Force	Discovery	and Distributed COM	Clipboard Data	Connection Proxy	Data Encrypted	Data Encrypted for Impact
							Exploitation of Remote	Data from Information	Custom Command and		
Hardware Additions	Compiled HTML File	AppCert DLLs	Appinit DLLs	Bypass User Account Control	Credential Dumping	Domain Trust Discovery	Services	Repositories	Control Protocol	Data Transfer Size Limits	Defacement
Replication Through	Component Object Model				Credentials from Web				Custom Cryptographic	Exfiltration Over Alternative	
Removable Media	and Distributed COM	AppInit DLLs	Application Shimming	Clear Command History	Browsers	File and Directory Discovery	Internal Spearphishing	Data from Local System	Protocol	Protocol	Disk Content Wipe
								Data from Network Shared		Exfiltration Over Command	
0 Spearphishing Attachment	Control Panel Items	Application Shimming	Bypass User Account Control	CMSTP	Credentials in Files	Network Service Scanning	Logon Scripts	Drive	Data Encoding	and Control Channel	Disk Structure Wipe
										Exfiltration Over Other	
SpearphishingLink	Dynamic Data Exchange	Authentication Package	DLL Search Order Hijacking	Code Signing	Credentials in Registry	Network Share Discovery	Pass the Hash	Data from Removable Media	Data Obfuscation	Network Medium	Endpoint Denial of Service
	- Justice and excitating a				Exploitation for Credential					Exfiltration Over Physical	
2 Snearnhishing via Service	Execution through API	BITS Jobs	Dylib Hijacking	Compile After Delivery	Arrass	Network Sniffing	Pass the Ticket	Data Staged	Domain Fronting	Medium	Firmware Corruption
a open pristing to serve	Execution through Medule	01103003	Elevated Execution with	complic Alter Delivery	Access	Notifoli Sinning	Tobs the mater	Data Stages	Domain Generation	mediam	rinnare conoption
2 Supply Chain Compromine	Load	Postkit	Dromot	Compiled HTML File	Forced Authoptication	Parceyord Policy Directyony	Romoto Darkton Protocol	Email Collection	Algorithms	Schodulod Transfor	Inhibit System Recovery
s suppry chain compromise	Cueleitation for Client	DOUCKIC	Frompt	complied trime the	Torced Authentication	Password Policy Discovery	Nemote Desktop Protocol	chian conection	Aigoritainis	Suleduled Hallsler	minor system vecovery
1 Touted Delationship	Exploitation for client	Desurer Extensions	Freed	Company of Firmuna	Unaking	Desinkeral Desine Diseases	Demote File Comu	Innut Canture	Callback Channels		Metwork Denial of Convice
a musteo kelationship	Execution	Change Default City	Emonu Evalution for Datations	Component Pinnware	Hooking	Peripheral Device Discovery	Remote the copy	input capture	Panoack channels		Network benal of service
e statut a seconda	Complete Management	Change Default File	Exploitation for Privilege	Component Object Model	land Carbon	Permission Groups	Description Constraints	Mar in the Province	Adult has been		Deserves Illiadore
5 Valid Accounts	Graphical User Interface	Association	Escalation	Hijacking	Input Capture	Discovery	Remote Services	Man in the Browser	Multi-nop Proxy		Resource Hijacking
	a strend		Extra Window Memory				Replication Inrough				
6	InstallUtil	Component Firmware	Injection	Connection Proxy	Input Prompt	Process Discovery	Removable Media	Screen Capture	Multi-Stage Channels		Runtime Data Manipulation
		Component Object Model	File System Permissions								
7	Launchetl	Hijacking	Weakness	Control Panel Items	Kerberoasting	Query Registry	Shared Webroot	Video Capture	Multiband Communication		Service Stop
8	Local Job Scheduling	Create Account	Hooking	DCShadow	Keychain	Remote System Discovery	SSH Hijacking		Multilayer Encryption		Stored Data Manipulation
			Image File Execution	Deobfuscate/Decode Files	LLMNR/NBT-NS Poisoning						
9	LSASS Driver	DLL Search Order Hijacking	Options Injection	or Information	and Relay	Security Software Discovery	Taint Shared Content		Port Knocking		System Shutdown/Reboot
											Transmitted Data
0	Mshta	Dylib Hijacking	Launch Daemon	Disabling Security Tools	Network Sniffing	Software Discovery	Third-party Software		Remote Access Tools		Manipulation
						System Information					
1	PowerShell	Emond	New Service	DLL Search Order Hijacking	Password Filter DLL	Discovery	Windows Admin Shares		Remote File Copy		
						System Network	Windows Remote		Standard Application Layer		
12	Regsvcs/Regasm	External Remote Services	Parent PID Spoofing	DLL Side-Loading	Private Keys	Configuration Discovery	Management		Protocol		
		File System Permissions				System Network			Standard Cryptographic		
13	Regsvr32	Weakness	Path Interception	Execution Guardrails	Securityd Memory	Connections Discovery			Protocol		
				Exploitation for Defense		System Owner/User			Standard Non-Application		
4	Rundll32	Hidden Files and Directories	Plist Modification	Evasion	Steal Web Session Cookie	Discovery			Layer Protocol		
				Extra Window Memory	Two-Factor Authentication						
15	Scheduled Task	Hooking	Port Monitors	Injection	Interception	System Service Discovery			Uncommonly Used Port		
				File and Directory							
.6	Scripting	Hypervisor	PowerShell Profile	Permissions Modification		System Time Discovery			Web Service		
		Image File Execution				Virtualization/Sandbox					
7	Service Execution	Options Injection	Process Injection	File Deletion		Evasion					

ELECTRUM Stage 2 Capability (ICS MITRE ATT&CK® Framework)

2	ICS Initial Access	ICS Execution	ICS Persistence	ICS Evasion	ICS Discovery	ICS Lateral Movement	ICS Collection	ICS Command and Control	ICS Inhibit Response Function	ICS Impair Process Control	ICS Impact
3	Data Historian Compromise	Change Program State	Hooking	Exploitation for Evasion	Control Device Identification	Default Credentials	Automated Collection	Commonly Used Port	Activate Firmware Update Mode	Brute Force I/O	Damage to Property
4	<u>Drive-by</u> Compromise	Command-Line Interface	Module Firmware	Indicator Removal on Host	I/O Module Discovery	Exploitation of Remote Services	Data from Information Repositories	Connection Proxy	Alarm Suppression	<u>Change Program</u> <u>State</u>	Denial of Control
5	Engineering Workstation Compromise	Execution through API	Program Download	Masquerading	Network Connection Enumeration	External Remote Services	Detect Operating Mode	Standard Application Layer Protocol	Block Command Message	Masquerading	Denial of View
6	Exploit Public. Facing Application	<u>Graphical User</u> Interface	Project File Infection	Rogue Master Device	Network Service Scanning	Program Organization Units	<u>Detect Program</u> <u>State</u>		Block Reporting Message	<u>Modify Control</u> Logic	Loss of Availability
7	External Remote Services	Man in the Middle	System Firmware	<u>Rootkit</u>	Network Sniffing	Remote File Copy	I/O Image		Block Serial COM	Modify Parameter	Loss of Control
8	Internet Accessible Device	Program Organization Units	Valid Accounts	Spoof Reporting Message	<u>Remote System</u> <u>Discovery</u>	Valid Accounts	Location Identification		Data Destruction	Module Firmware	Loss of Productivity and Revenue
9	Replication Through Removable Media	Project File Infection		Utilize/Change_ Operating Mode	Serial Connection Enumeration		Monitor Process State		Denial of Service	Program Download	Loss of Safety
10	Spearphishing Attachment	Scripting					Point & Tag Identification		<u>Device</u> Restart/Shutdown	Rogue Master Device	Loss of View
11	Supply Chain Compromise	User Execution					Program Upload		Manipulate I/O Image	Service Stop	Manipulation of Control
12	<u>Wireless</u> Compromise						Role Identification		Modify Alarm Settings	Spoof Reporting Message	Manipulation of View
13							Screen Capture		Modify Control Logic	<u>Unauthorized</u> Command Message	<u>Theft of</u> <u>Operational</u> Information
14									Program Download		
15									Rootkit System Firmware		

https://www.dragos.com/mitre-attack-for-ics/

https://mitre-attack.github.io/attack-navigator/enterprise/

https://www.dragos.com/resource/mapping-industrial-cybersecurity-threats-to-mitre-attack-for-ics/

ICS Threat Groups from Dragos and ICS MITRE ATT&CK®

Legend:

- Targeted Energy industry and USA/North America
- Have shown high TTP capability in stage 2

CHRYSENE

IT compromise, information

gathering and recon against

SINCE 2017

industrial orgs

Watering-hole and phishing leading

to ICS recon and screenshot

ALLANITE

SINCE 2017

collection

Common Threat Group/Actor Categories

- ➢ Insider
- General Hacker
- > Organized Crime/Ransomware
- > Spammers/Phishers/Scammers
- > Terrorists/Activists
- Foreign Intelligence Services/Nation State
- Industrial Espionage/Sabotage

Threat Categories

Ransomware

- Ransomware vs. wipers
- Multiple threat actors with different goals

Software Supply Chain

Insider Threat

- Malicious vs. Unwitting Insider
 - *Could be the catalyst for initial compromise for other threats or threat actors

Emerging/Disruptive Technology

- Cloud Computing
- Drones

Physical Attacks

• Metcalf

TRISIS/TRITON/Triconex Attack

Threat Group: XENOTIME/TEMP.Veles

- Attacked a specialized Safety Integrated System (SIS) that are specialized systems that intervein at the process level to protect people, processes, and equipment
- > Attack reached Stage 2 (OT) at an oil refinery environment
- Highly targeted, requiring
 - deep understanding of the technology and process being impacted
 - Large amount of time and resources likely with nationstate backing
- Was a near miss in accomplishing their perceived goal of damaging equipment and causing harm to people.
 - Showed this type of attack is possible

https://attack.mitre.org/groups/G0088/ https://www.dragos.com/wp-content/uploads/TRISIS-01.pdf

ADVERSARY: + Unique tool development

CAPABILITIES:

+ TRISIS + Custom credential harvesting

+ Off-the-shelf tools

VICTIM:

+ Oil & Gas, Electric Utilities <u>+ Middl</u>e East, North America

[•] Midule East, Noi th Amer

- INFRASTRUCTURE: + Virtual Private Server and compromised, legitimate infrastructure
- + European web hosting providers
- + Asian shipping company

ICS IMPACT:

+ Demonstrated capability to execute disruptive ICS attack, such as the 2017 TRISIS incident

https://www.dragos.com/wp-

content/uploads/relocated/t/Threat_Group_Trading_Ca rds_XENOTIME_XENOTIME-731x1024.png

Limited Disclosure

SIS and PS similarities

- Safety Instrumented Systems (SIS) and Protection Systems (PS) are similar in that They both have:
 - A goal of ensuring that equipment fails in a fail-safe mode to protect the overall system or process.
 - Work at level 1 and 0 of the Purdue Model
 - Serial and network-based communication and management ports for:
 - Configuration and Calibration Management
 - Logging, alerting, and monitoring
 - Access Control
 - Requires another workstation (permanent or transient) to interact with it or can potentially be accessed remotely through the network (Purdue Model Level 2)
 - Guidance on designing, testing, and maintenance programs

https://collaborate.mitre.org/attackics/index.php/Safety_Instrumented_System/Protection_Relay WG I-25 Commissioning_Testing of Protection Systems 5-10-2017.pdf (pes-psrc.org) What is a Safety Instrumented System? - English | AIChE

Limited Disclosure

Mapping the TRISIS Attack and 11/2/2021 Joint Review of Protection System Commissioning Programs

TRISIS Best Practices

- Start with advice from the vendor
- SIS should be deployed on isolated networks
- Controls to prevent physical unauthorized physica and logical access. Safety controls, equipment, or safety network
- Workstation, and software used to connect to the SIS systems should be secured
- Removable and transient cyber assets should be controlled and sanitized for potential malware prior to connecting to the SIS
- For SIS that have a programming and running mode it should be changed to running to prevent malicious or accidental modifications to configurations

PSC Program Observed Best Practices for Consideration

Included the cyber security experts as participants in the commissioning process.

As part of the commissioning process on tie lines, some participants employed back-to-back relay testing (i.e., testing in a laboratory environment) and end-to-end testing onsite.

- Required the commissioning group to review the settings and logic issued by the design engineering group.
- Ensured that the engineering drawings package identified all equipment that needed to be isolated or shorted to ensure adequate in-service protection throughout all stages of the project.
- Reported that when using a third-party contractor, it requires a company subject matter expert to review the commission test results before placing the equipment inservice.

https://attack.mitre.org/groups/G0088/

https://www.dragos.com/wp-content/uploads/TRISIS-01.pdf

¹⁷

Recap

- Know the difference between risk, threat, and vulnerabilities and how threat fits into Governance, Risk, and Compliance (GRC)
- Understand what Tactics, Techniques and Procedures (TTPs) are and how easy/hard those are to change for the attacker
- Difference between Stage 1 and Stage 2 of the ICS Cyber Kill Chain
- High-level understanding of the known ICS threat landscape
- High-level understanding of some of the threat categories

Now I can talk about threats, how do I operationalize it to improve my cybersecurity program?

https://mitre-attack.github.io/attack-navigator/enterprise/ https://www.dragos.com/mitre-attack-for-ics/

https://www.dragos.com/resource/2021-year-in-review/

https://www.dragos.com/resource/mapping-industrial-cybersecurity-threats-to-mitre-attack-for-ics/

Operationalizing Threat Management

Asset and Configuration Management

- Understand what assets are critical to your BES operations, mission, and business (Business Impact/Crown Jewel Analysis)
- Configuration baselines of cyber systems and cyber assets that are critical
- Network traffic baselines (what cyber assets should be talking to whom?)
- Increased collection capability of logging and monitoring of cyber systems, assets, and network traffic (Alerts, logs, Network Packet Captures/Netflow) i.e.
 Increasing IT Situational Awareness

Operationalizing Threat Management Cont.

Tabletop Exercises

- Based on current threat groups and threat categories by operationalizing real or simulated incidents (The ICS and Enterprise MITRE ATT&CK framework can help)
- Using the DHS/FEMA Homeland Security Exercise and Evaluation Program (HSEEP) and the CISA version for Cybersecurity (CTEP) frameworks
- Tool examples
 - RF has developed an Incident Response Assessment Tool (IRPAT). Please visit the <u>https://www.rfirst.org</u> <u>Contact Us</u> page and choose Resilience from the list of Areas.
 - Dragos Tabletop Exercise <u>https://www.dragos.com/tabletop-exercise/</u>
 - Backdoors & Breaches from Black Hills Security https://www.blackhillsinfosec.com/projects/backdoorsandbreaches/
 - NUARI DECIDE Platform https://nuari.net/decide/

Note: This is not an endorsement of these tools or companies.

https://www.cisa.gov/sites/default/files/publications/2%20-%20CTEP%20Exercise%20Planner%20Handbook%20%282020%29%20FINAL_508.pd

Forward Together • ReliabilityFirst

Operationalizing Threat Management Cont.

> Threat Reporting

- The more we share as an industry, the more we can help each other with being able to detect, respond, and contain potential threats effectively and quicker.
 - This was a hard lesson learned from the Financial Industry with the FS-ISAC back in 2009-2012 timeframe with a rampant up-tick in account takeovers and DDoS attacks
- Some reporting is required through CIP-008, EOP-004, and DOE OE-417 standards.
- The Electric Information Sharing and Analysis Center (E-ISAC) <u>https://www.eisac.com/</u>
 - Provides resources and services for members to share and communicate threat intelligence information with peers within the Industry

https://www.bankinfosecurity.com/interviews/bill-nelson-i-1758

Operationalizing Threat Management Cont.

Improving Incident Response Metrics from Mandiant

Time	Category	Measurement	Benefit				
Dwell	Detect	Time from initial entry into the system/network to detection	Measures the effectiveness of detection systems and capabilities				
	Review	Time from detection of the incident to analyst for review	Determines if staffing level is properly sized				
	Analyze	Time to analyze the incident	Determines if the organization has the right expertise and tools and if the right escalation occurs				
	Identify	Time to identify the affected assets, location, and owner	Measures the effectiveness of asset inventory				
	Notify	Time to successfully notify appropriate contacts	Measures the effectiveness of contact database and communication plan				
Containment	Collect	Time to collect live response data	Determines if the right tools are deployed to assist in collection				
	Validate	Time to validate intrusion based on collected data	Determines if the right skill sets are in place at each level				
	React	Time to react (contain, remove, etc.)	Determines if the right definition of remediation exists and if it is applied consistently				

f((D + R + A + I + N) + (C + V + R))

Table 1: DRAIN CVR Definitions

* Can use these metrics during tabletop exercises and attack simulations

https://www.nist.gov/system/files/documents/2016 /09/16/mandiant_rfi_response.pdf

Forward Together • ReliabilityFirst

aware Illinois Indiana Kentucky Maryland Michigan NewJersey insylvania Ohio Tennessee Virginia Washington, DC West Virginia Wisconsin laware Illinois Indiana Kentucky NewJersey Michigan Maryland hio Pennsylvania Tennessee Virginia Washington, DC West Virginia Wisconsin elaware Illinois Indiana Michigan Maryland Kentucky New Jersey QUESTIONS & Answers Wisconsin entucky Illinois Indiana Marylar Delaware Michigan New Jersey **Forward Together RF ReliabilityFirst** Vest Virginia Pennsylvania Tennessee Virginia Washington, DC Ohio Wisconsin elaware Illinois Indiana Kentucky Maryland Michigan NewJersey rginia Pennsylvania Tennessee Ohio Washington, DC West Virginia Wisconsin laware Illinois Indiana Kentucky Maryland Michigan NewJersey o Pennsylvania Tennessee Virginia Washington, DC West Virginia Wisconsin na Illinois Delaware Kentucky NewJersey Michigan Maryland Limited Disclosure see Pennsylvania Washington, DC Virginia Ohio West Virginia Wisconsin

WHEN GOOD IS TOO GOOD

Brian Hattery, Planning & Engineering Supervisor

Transmission Field Services, AEP

AEP Background Info

- American Electric Power has
 - Nearly 5.5 million regulated customers in 11 states
 - 40,000 miles transmission line and 223,000 miles of distribution lines
 - More 765 kV line than all other US systems combines
- Concerning batteries, AEP Transmission has
 - More than 3,000 substations
 - Over 3,800 stationary battery systems
 - Of those battery systems, over 60% are NERC applicable
 - Approximately 300 VRLA type on the system
 - All remaining are VLA

AEP Transmission

AEP Substations by State

DC Supply & AEP-T

• Field oversite -

- DC Supply commissioning and maintenance practices are overseen by Transmission Field Services – Station Policies and Procedures team and the DC Supply working group
- The Station P&P team establishes commissioning and maintenance policies and acts as a go-between for the field and the equipment standards groups
- The working group is lead by P&P and consists of field and standards personnel and meets regularly
- Discussions include problems, maintenance practices, updates, and policy changes

DC SUPPLY MAINTENANCE PRACTICES

Maintenance Practices

• Prior NERC PRC-005...

Internal ohmic testing was happening in all regions

Testing regularly, annually or biannually

Bad

Each area had it's own standards

Different test sets used

Different test results

Testing jars only

No intercell connection tests

BOUNDLESS ENERGY"

Response to PRC-005 - Standardization

- AEP transmission focused on standardization across all regions
 - A test set for all areas was chosen
 - Funds were secured to provide all areas with the test set
 - New testing standards and maintenance practices were written
 - Now testing individual cells and intercell connections
 - Expected test values were developed as a guide (using conductance)
 - All areas personally received the test sets and training in 2012.

Response to PRC-005 - Test Criteria

- Testing criteria was developed as part of the standardization
 - Cell conductance
 - 70% of expected conductance Warning
 - 60% of expected conductance Failed
 - Intercell connectors
 - Greater than 100 UOhms Warning
 - Greater than 500 uOhms Failed
 - Response actions and time-frames are dictated by the degree of failure

Response to PRC-005

- To ensure NERC compliance, AEP transmission...
 - Uses an accelerated maintenance schedule
 - Bi-monthly checks to cover 4 calendar month tasks
 - Annually maintenance to cover the 18 months tasks
 - Uses a layered approach to analyzing test results
 - Test personnel reviews results before leaving the station
 - An internally created software analyzes the results and flags concerns
 - A local field engineer reviews the analysis and raw test results and takes action from there
 - The local field engineer is ultimately responsible for NERC compliance of batteries in their area

HOW GOOD BECAME TOO GOOD

New Employee, Fresh Eyes

- At the end of 2018, a new field engineer was hired within an area of AEP
- As part of his new duties, he was trained on how to test batteries and review the results
- During his first review of battery test results in spring of 2019, he noticed certain batteries in his area had abnormally low test results for the intercell connections
- He asked his supervisor, who had trained him, why the results were so low on some batteries, which triggered an investigation

Cell #	Strap
CELL01	1
CELL02	3
CELL03	1
CELL04	3
CELL05	3
CELL06	1
CELL07	3
CELL08	1
CELL09	3
CELL10	2
CELL11	1
CELL12	1
CELL13	1
CELL14	2
CELL15	4
CELL16	4
CELL17	3
CELL18	3
CELL19	3
CELL20	1

BOUNDLESS ENERGY

The Investigation

- The field supervisor initiated an investigation which determined:
 - In his region, a number of batteries had intercell connectors test abnormally low
 - <10 uOhms, when the expected range was 20-80 uOhms
 - All tests were performed by the same individual (who we'll call "Steve")
 - Steve had been performing annual battery tests since 2012 (and earlier), when the new standards were established
 - Steve was asked to demonstrate his testing procedures

Typical Test Process

The test begins with an internal cell test

•Then an intercell connection test is performed

•The connection resistance is determined by finding the difference between the tests

The Problem

Steve performed the internal cell test correctly

•However, when the Steve performed his intercell connection test, he placed his test lead on top of the connector

•This essentially left out the resistance of this connection point

The Results

- The investigation result
 - Steve believed he had been performing the tests correctly since 2012
 - He was genuinely surprised to learn he had been performing the tests incorrectly
 - Internal meetings were held with different compliance groups
 - It was determined that for every NERC applicable battery that Steve tested, potentially multiple violations had occurred
 - AEP self-reported to NERC

The Violation

An AEP Company

BOUNDLESS ENERGY"

BOUNDLESS ENERGY"

Why was this Missed?

- The new field engineer started reviewing test data in 2018 Why wasn't this caught earlier?
- The previous test reviewer was interviewed
- He had noticed the low test results, but did not think they were a problem
- The testing criteria only discussed high resistance values being a problem
- There was no protocol for test results being "too good"

	Test Day	Test Day	Test Day
	02-21-2017	01-15-2018	03-28-2019
Cell #	Strap (uOhms)	Strap (uOhms)	Strap (uOhms)
CELL01	26	1	25
CELL02	29	3	32
CELL03	25	1	21
CELL04	30	3	27
CELL05	26	3	39
CELL06	32	1	34
CELL07	22	3	42
CELL08	32	1	31
CELL09	27	3	36
CELL10	24	2	32
CELL11	26	1	37
CELL12	28	1	35
CELL13	30	1	27
CELL14	21	2	34
CELL15	24	4	44
CELL16	24	4	36
CELL17	34	3	36
CELL18	40	3	39
CELL19	25	3	35
CELL20	28	1	32
CELL21	37	2	37
CELL22	30	1	25
CELL23	29	2	40
CELL24	33	4	30
CELL25	28	4	37
CELL26	35	4	25
CELL27	28	3	27
CELL28	22	4	17
	24	2	37

The Mitigation

Starting with Steve

- Immediately, every battery Steve had tested that year was reexamined
 - Those with questionably low intercell connection resistances were retested and confirmed good
- How far had this spread locally?
 - Test results for all batteries in the region were examined
 - Since Steve had been testing batteries for over 20 years, and was around in 2012 when the new standards were established, he was considered "experienced"
 - He had been asked to train newer employees on battery testing for a number of years
 - However, it looked to be confined to Steve
 - Any other batteries with questionable test results were retested as a precaution

AEP TRANSMISSION An AEP Company BOUNDLESS ENERGY

LIMITED DISCLOSURE

The Mitigation

- Did this problem exist anywhere else?
 - Who else may be testing incorrectly in other regions of AEP?
 - A specialized report was created to look through AEP's database of test files to look for low strap values
 - Anything suspicious was investigated by local field engineers, including requesting a demonstration of testing methods
 - The report was then set up to run quarterly. So far, no additional problems have been found.

					PRC 005		
	Battery				Applicable		Strap
TFS Are 💌	Location 💌	Asset Name 🗾	SSC 💌	Serial Nr 📃 💌	Version 🗾	Test Date 💌	Data 💌
		BATTERY1	APP	10204859	Version 2	1/14/2019	1
		BATTERY#1	RWH	10000	None	3/11/2019	1
		BATTERY	APP	10204590X	None	4/4/2019	1
		BATTERY	APP	1021223	Version 2	2/20/2019	1
		BATTERY1	APP	60V70GI175LA	Version 2	2/11/2019	1
		BATTERY 1	APP	1022506204B	None	2/13/2019	1
		STATION BATTERY	BUC	0204480	None	5/2/2019	1
		BATTERY BANK		10250167/008	ERCOT-T	5/28/2019	1
		BATTERY	APP	P125	None	2/12/2019	1
		BATTERY	HUN	10259110001	Version 2	1/7/2019	8
		BATTERY 1	APP	CB125	None	4/3/2019	1
		BATTERY BANK	RDK	T01275478232012	None	8/28/2019	1
		DICM BATTERY1	APP	DICM1	Version 2	1/16/2019	1
		DICM BATTERY2	APP	DICM2	Version 2	1/17/2019	1
		BATTERY BANK STA_1	AAA	T014100720131106	None	7/24/2019	3
		BATTERY #1	RWH	IND5714	None	4/4/2019	1
		BATTERY	RWH	10289910050	Version 2	1/29/2019	1
		BATTERY 1	APP	R98413	Version 2	3/25/2019	1
		BATTERY1	APP	SP93014	Version 2	2/11/2019	1
		BATTERY BATT	STE	0291581_026	Version 2	1/8/2019	5
		138KV BATTERY 1	APP	JF138252015	Version 2	1/17/2019	1
		STATION BATT	EC1	BATT3028_1	None	3/21/2019	1
		CANYON ROCK BATTERY	AB1	10298011/025	Version 2	6/11/2019	4
		BATTERY	APP	S54452	Version 2	2/27/2019	1
		BATTERY 1	APP	RAD06172015	None	2/7/2019	2
		BATTERY 1	APP	AUST6302015	None	1/24/2019	1

The Mitigation

Mhos

551

636 513

588

443

496

576

613

537

638

594 606

551

618

522

634

551 532

514

657

638

521

572

595

Battery JAR01

JAR02

JAR03 JAR04

JAR05

JAR06

JAR07 JAR08

JAR09

JAR10

JAR11

JAR12

JAR13 JAR14

JAR15

JAR16

JAR17

JAR18

JAR19

JAR20

JAR21

JAR22

JAR23 JAR24

- Additional Mitigation
 - The software that evaluates test results had added programming
 - Any batteries where greater than 75% of the intercell connections were less than 15 uOhms were flagged
 - The test reviewer is required to enter a comment on the flagged results

% Ref	u_Ohm	Vdc		
80	25	2.201	A 2.4 -	Upper Limit
93	21	2.221	235-	2.35
75	28	2.201		
86	10	2.221		
65	6	2.201		
72	9	2.270		Voltage
84	- 4	2.280	More than 75% of the strap readings are	
89	3	2.290	investigate testing technique and/or call	
78	15	2.280	DC working group member.	
93	6	2.290		LowerLimit
87	7	2.295	ОК	Lower Link
88	248	2.236	Voltage	2.1
80	32	2.280		
90	11	2.290		1
76	4	2.280	250-	No. Inc.
92	4	2.290		Non-Jumper /
80	1	2.270	200-	
78	5	2.265		Strap or Jumpe
75	9	2.275	<u><u> </u></u>	Fail
96	5	2.290		
93	1	2.295		Strap or Jump
76	8	2.275	50	warning
83	16	2.270	50 -	More than 759
87	NA	2.275		of straps are
			Strap Micro-Ohms	< 15micro-Ohm
	80 93 75 86 65 72 84 89 78 93 87 88 80 90 76 92 80 75 96 93 76 83 87	Norm u_Ohm 80 25 93 21 75 28 86 10 65 6 72 9 84 4 89 3 78 15 93 6 87 7 88 248 80 32 90 11 76 4 92 4 80 1 78 5 92 4 80 1 76 8 93 1 76 8 83 16 87 NA	Nicht U_Ohm Vdc 80 25 2.201 93 21 2.221 75 28 2.201 86 10 2.221 65 6 2.201 72 9 2.270 84 4 2.280 89 3 2.290 78 15 2.280 93 6 2.290 78 15 2.280 93 6 2.290 78 15 2.280 93 6 2.290 87 7 2.295 88 248 2.280 90 11 2.290 76 4 2.290 92 4 2.290 80 1 2.275 96 5 2.290 93 1 2.295 76 8 2.275 93 16 2.270	Number U_Ohm Vdc 80 25 2201 A 93 21 2221 A 75 28 2201 A 86 00 2221 B C 75 28 2201 C C 72 9 2270 C C 84 4 2280 O C 89 5 2290 Trice testing technique and/or call D 93 5 2290 OK Votage 90 11 2290 OK Votage 91 2290 Trice testing technique and/or call D 92 4 2290 Trice testing technique and/or call D 92 4 2290 Trice testing technique and/or call D 93 1 2295 Trice testing technique and/or call D 93 1 2295 Trice testing technique and/or call D 93

LIMITED DISCLOSURE

The Mitigation

- Additional Mitigation
 - During 2019, every battery tester and all field engineers were trained on this event and the proper testing techniques
 - All testers were trained on how their actions kept AEP compliant with NERC standards
 - All appropriate battery policy documents were also updated

Lessons Learned

- A number of lessons were learned from this experience
 - Do not be too narrowly focused
 - Standards created looked only in one direction Too High!
 - The question should have at least been discussed if results were too low
 - A conversation and a little imagination could have caught this problem years ago
 - Do not undervalue the importance of a fresh perspective
 - For nearly 6 years this problem was missed!
 - One pair of new eyes easily caught a problem that now can be clearly seen
 - All testing standards have been and are currently being reexamined by a compliance group for any potential deficiencies

Lessons Learned

• A number of lessons were learned from this experience

- You know what they say about assuming...
 - It was assumed for years that because Steve had been taught how to test, and was given a detailed testing guide (with pictures), he knew how to test correctly
 - And he was testing correctly, in every way but one
 - Assumptions are not safe

ROYAL 12 AND 34KV BYPASS/DISCONNECT SWITCH COMBO UNITS

Bonus Content

Disconnect/Bypass Switches

- Beginning around 2017, low voltage construction has utilized a Royal combination switch that encompasses both a breaker disconnect and a bypass switch.
- Depending on the application, the bypass switch may have fuses instead of a solid blade.

On the Physical Prints

These points will remain energized during a VCR clearance.

Concerns

- <u>Proximity</u> between ground and energized 12kV requires awareness and planning. Even so, a moments inattention can be very serious.
- Hazard at the time of placing safety grounds, with energized equipment so close.
- Another hazard if working near the top of the VCB such as doing a bushing replacement.
- AND, horizontally adjacent switches have led to switching errors.

12 and 34kV Royal Bypass/Disconnect Switches-Signage

- Mainly installed on Transformer LS totalizer breaker applications.
- The addition of three signs will make the switch functions clearer and aid in hazard recognition for those working in proximity.
- With care, the signs can be placed while the equipment remains in service.

Also, a Re-design

- The disconnect switch is offset lower than the bypass.
- This creates a visible difference meant to minimize switching errors as well as reduce safety hazards on equipment under clearance.
- The switches are on a common frame and mounted as one unit.

To Sum Up

- Labeling kits were provided for the old switch design in the summer of 2019. However, incomplete records may have inadvertently left off switch units so some may be missed.
- The offset switch design came out in fall of 2019 and was probably first used in construction in 2020(?). The offset switch design was supposed to have the labels affixed at the factory.
- However, due to delays in ordering the new design, and delays in field construction, there may be old units that have been in-serviced recently. Thus, this topic is still relevant.

A Recent Switching Error

- This occurred in AEP East.
- Switching on 6/23/21 requested the breaker disconnects to be closed and the bypass switches to be checked.
- This step was reported complete on that date.

The Discovery-A Questioning Attitude!!

- Found on 3/15/22 during routine station inspection.
- CB disconnects were open and the bypass switches were closed.
- Corrected the same day after discussion with dispatch.

Thoughts

- Switch was an old style without any offset between disconnect and bypass. Further, there were no labels in place.
- A <u>relatively new servicer</u> made the discovery (a fresh perspective).
- <u>Complacency</u>-the situation existed for nine months!
- <u>Distraction</u>-servicer making the error was helping to train a new dispatcher and may have lost focus.
- The breaker CTs fed a set of Bitronics ammeters. They would have read zero during the error period.

Follow-Up

- The area found three other stations with these switches. They weren't labeled either.
- Currently being rectified.
- Others??
- We have had another recent switching error involving this same switch design. It is currently being investigated.

Contact Info

 Brian Hattery Planning and Engineering Supervisor AEP Transmission Field Services
Email: <u>bfhattery@aep.com</u> Phone: 419-675-5614

NERC Lessons Learned

Dwayne Fewless Principle Analyst, Operational Analysis & Awareness ReliabilityFirst

Agenda

- >What are Lessons Learned for?
- Example 1: Human error leads to evacuation of primary control room
- Example 2: Unmanned forklift contact with energized bus
- > Where can you find written Lessons Learned?
- > How do I get more information about a specific Lesson Learned?
- > How can I submit a Lesson Learned?

LIMITED DISCLOSURE

HUMAN ERROR LEADS TO EVACUATION OF PRIMARY CONTROL ROOM

Forward Together • ReliabilityFirst

Primary Interest Groups

- Balancing Authorities (BAs)
- > Transmission Operators (TOPs)
- Generation Operators (GOPs)

Problem – Maintenance worker failed to follow hot work procedures; control center had to be evacuated

Event Details

- Fire occurred in the powerhouse adjacent to control center; extensive smoke required evacuation
- Smoke traveled up a utility tunnel and elevator, reaching the energy control center
- Primary control center was partially evacuated
 - Operators utilized the back-up control center
- Once relief crew reached the backup center, the system operators at the primary control center were able to leave their posts and report to the back-up control center

Cause of Event

Investigation determined that the maintenance workers incorrectly assessed the tank

- Workers were tasked with removing a potable water tank
- A spark from a torch ignited the plastic lining of the tank
- Prior to the removal, the workers viewed the side of the tank which had no lining or combustible materials
- Fire occurred in the center of the tank which had flammable lining

> Workers did not fully inspect the area for combustible materials

• Thus, a fire watch was not established and a hot work permit was not issued

Corrective Actions

> All personnel have been retrained on the hot work permit system

- Specific measures will be implemented to prevent smoke from travelling to the control center
 - Fire stops
 - Ventilation changes

Lessons Learned

- Workers should evaluate work conditions before beginning any maintenance activities and follow established hot work safety guidelines
- Periodic training on hot work procedures should be given to all maintenance employees
- > Control center ventilation equipment and fire stops should be evaluated regularly
 - This will ensure that proper precautions have been taken to ensure that smoke from internal/external fires cannot reach the control center
- When control centers are not separate i.e., they are adjacent to other active facilities, consideration should be given to the impact of these facilities on control centers

LIMITED DISCLOSURE

UNMANNED FORKLIFT CONTACT WITH ENERGIZED BUS

Forward Together • ReliabilityFirst

Problem Statement

Primary Interest Groups

- Transmission Owner (TO)
- Transmission Operator (TOP)

Problem – unmanned forklift came into contact with energized bus

- Caused breakers connected to a 345-kV bus to open
- Transfer trip occurred on 115-kV and 2-345-kV lines
- Electrical service to a coal mine was interrupted

Event Details

- > Unmanned forklift made contact with 345-kV bus, causing a fault and clearing the bus
- Forklift rose due to faulty controls and/or by drift elicited by an electromagnetic field of the bus
- > 115-kV & 2-345-kV lines were tripped
- Line servicing coal mine was de-energized
- > Mine personnel were not notified of the work taking place
 - No preparations were made for a potential outage
- All lines were returned to service
 - Forklift was removed
 - Faulted bus was confirmed to be suitable for re-energization and continued use

No injuries, generation outages or other customer service outages occurred as a result of the event

Corrective Actions (Pt. 1)

- At the end of a shift, all equipment shall be moved to a designated parking area away from energized or potentially energized equipment
- At the end of a shift, equipment should be checked to make sure it is not running and all keys to equipment shall be removed and locked in a secure place
- When heavy equipment is not in use, it will be turned off with the keys removed and locked in a secure place
- Machines used in tight space working environments may be left in place at the end of the shift
 - Keys shall be removed and secured in a safe place

Corrective Actions (Pt. 2)

> Job site shall be inspected at the end of the shift to check equipment

- Ensure that equipment is not running
- Ensure that keys have been removed and locked in designated area
- Check fencing and gates to ensure that the site is secure
- Perform a Failure Mode and Effects Analysis (FMEA) for the switchyard and other critical locations to identify hazards and how to mitigate them
 - Communicate with all possible affected entities to inform them when work is being performed that might impact them
 - Include Power System Operators & Generator owners/Operators

Lesson Learned (Pt. 1)

Construction equipment in a switchyard should never be left running unmanned

- Keys to the equipment should always be removed and stored in a secure area
- Construction work sites in energized switchyards shall be inspected at the beginning of and end of each shift
 - Ensure all barriers are identified and in place for potential hazards of accidental electrical contact of construction equipment

Lesson Learned (Pt. 2)

All heavy equipment (including forklifts) should be moved to a designated parking area away from energized or potentially energized equipment when not in use

- If the equipment cannot be moved, it should be put into a lockdown position and inspected to ensure it could not make contact with other equipment in the substation
- Before starting work in the switchyards, notify and coordinate with all possible affected entities

Where to find Lessons Learned

Lessons Learned can be found on the NERC website at the following link:

https://www.nerc.com/pa/rrm/ea/Pages/Lessons-Learned.aspx

To get additional information

Reach out to Region EA contact

Contacts at ReliabilityFirst:

- Dwayne Fewless
- Danielle Daugherty
- Kellen Phillips
- Bill Crossland

Send questions

- Contact will be made with entity
- Either questions will be answered, or a meeting will be set up for discussion

To Submit a Lesson Learned

Contact RF EA

- Identify Lesson Learned
- Work with RF EA to create Lesson Learned
- Submit Lesson Learned
 - You will have the option to either be on the review team or look over the submission after review team is complete

aware Illinois Indiana Kentucky Maryland Michigan NewJersey insylvania Ohio Tennessee Virginia Washington, DC West Virginia Wisconsin laware Illinois Indiana Kentucky NewJersey Michigan Maryland hio Pennsylvania Tennessee Virginia Washington, DC West Virginia Wisconsin elaware Illinois Indiana Michigan Maryland Kentucky New Jersey ennsylvania QUESTIONS & Answers Wisconsin entucky Illinois Indiana Marylar Delaware Michigan New Jersey **Forward Together RF ReliabilityFirst** Vest Virginia Pennsylvania Tennessee Virginia Washington, DC Ohio Wisconsin elaware Illinois Indiana Kentucky Maryland Michigan NewJersey rginia Pennsylvania Tennessee Ohio Washington, DC West Virginia Wisconsin laware Illinois Indiana Kentucky Maryland Michigan NewJersey o Pennsylvania Tennessee Virginia Washington, DC West Virginia Wisconsin Illinois Delaware Kentucky NewJersey Michigan Maryland na see Pennsylvania Washington, DC Virginia Ohio West Virginia Wisconsin