

RF Fall Virtual Workshop

Brian Thiry Manager, Entity Engagement August 25, 2020

Welcome!

Morning Session: Facility Ratings

• 8:00 a.m. – Noon

Afternoon Session: Supply Chain

• 1:00 p.m. – 5:00 p.m.

Before We Get Started...

- Please make yourself comfortable
- Eliminate unnecessary distractions
- Participate by joining us at Slido.com #RFFacilityRatingsWS

> Take notes, be engaged, and share what you learned

The purpose of today's morning session:

- Provide an overview of the Facility Ratings issue
- Discuss risks and mitigations we have seen
- Share internal controls and best practices

Forward Together • ReliabilityFirst

Morning Agenda

> Welcome - Background and History of the Facility Ratings Risk

• Brian Thiry, Manager – Entity Engagement

Compliance Monitoring and Facility Ratings

• Derek Kassimer, Principal Analyst – Risk Analysis & Mitigation

Internal Controls and Facility Ratings

- Denise Hunter, Principal Technical Auditor Operations & Planning
- Brian Hallett, Principal Reliability Consultant Entity Engagement

Commissioning Process and Facility Ratings

• Jim Kubrak, Manager – Operations & Planning

> Validation and Verifications of Facility Ratings

• Johnny Gest, Manager – Engineering & System Performance

Virtual Breakout Sessions

Virtual Breakout Sessions

Large Transmission Owners

American Electric Power Service Corporation

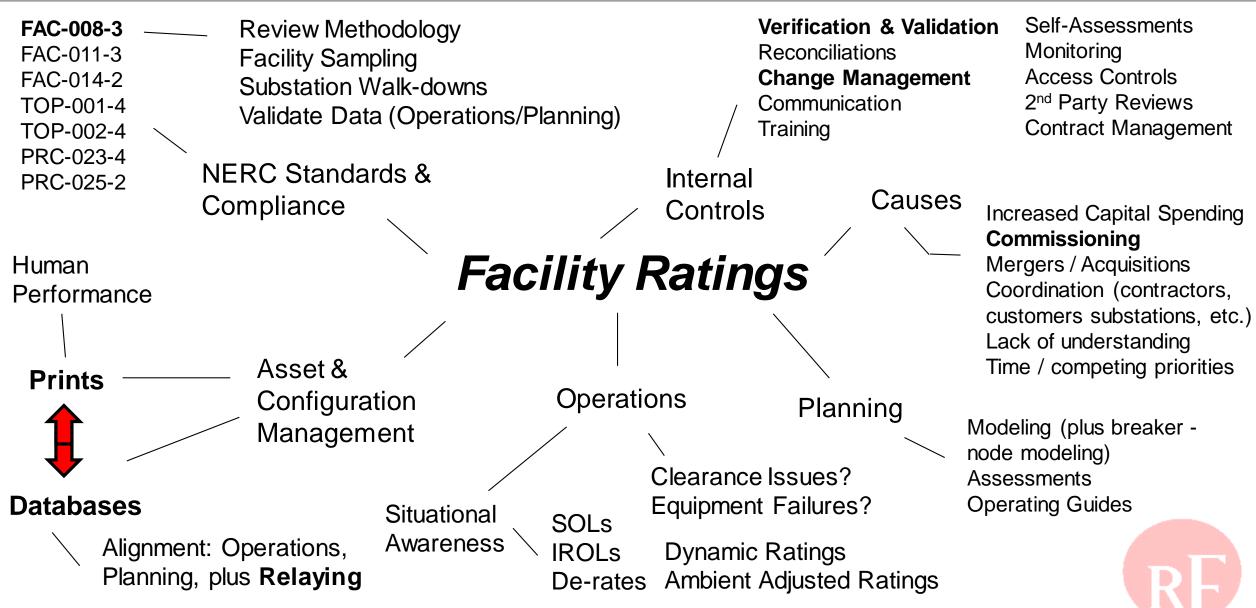
- Kamran Ali, Managing Director
- Hassan Hayat, Regional Manager
- PPL Electric Utilities Corporation
 - David Quier, Director of Asset Management
 - Shadab Ali, Manager of Transmission

Medium-Small Transmission Owners

- CenterPoint Energy (Vectren)
 - Ryan Abshier, Manager of the Indiana Planning & Protection Group
- Duquesne Light Company
 - Joe Pilch, Transmission Planning Engineer

Generator Owners

- Talen Energy
 - Nick Poluch, Senior Manager, NERC & Cyber Protection



Forward Together • ReliabilityFirst

More Than Just FAC-008

Forward Together • ReliabilityFirst

What is the Risk?

Cannot wait for the risk to be realized

- Mitigate Facility Rating risks <u>before</u> equipment failures and outages
- Key example: Cyber-security risks and threats

Facility Ratings and Modeling are the building blocks

- Operational and Planning studies are predicated on these being accurate
- Challenges to advance to dynamic ratings/sensors if base is not correct
- Incorrect ratings are violations of a Standard developed and approved by industry, and need to be corrected
 - Correcting ratings to properly reflect system conditions mitigates unnecessary risk

FAC-008 is not a Print Management Standard

- However, it's extremely challenging to be good at Facility Ratings and have incorrect prints
- Inaccurate prints/databases impacts other risks (Human Performance, Relaying, etc.)

ERO Action Items

Denon Cubatation

> Work with Industry to Analyze, Communicate & Mitigate the Risk

Elemen Mainte Manage	ERO Risk Element: Maintenance and Management of BPS Assets		ERO starts receiving multiple severe self-reports	ERO Risk Elem Gaps in Progra Execution	 Began Substation Walk-Downs as part of Audit process 1:1 meetings with Transmission Owners ERO Practice Guide Endorsed (June 2020)	
2016	2017	2018		2019		Facility Ratings Vorkshop (August 25)

Compliance Monitoring and Facility Ratings

Derek Kassimer Principal Analyst, Risk Analysis & Mitigation RF Fall Virtual Workshop

August 25, 2020

Agenda

Definition of Terms

- **Facility Ratings use in Operations and Planning**
- > What to expect during compliance monitoring of FAC-008-3
- CMEP Practice Guide

Terms

- System Operating Limit (SOL) The value (such as MW, MVAR, amperes, frequency or volts) that satisfies the most limiting of the prescribed operating criteria for a specified system configuration to ensure operation within acceptable reliability criteria. System Operating Limits are based upon certain operating criteria. These include, but are not limited to:
 - Facility Ratings (applicable pre- and post-Contingency Equipment Ratings or Facility Ratings)
 - Transient stability ratings (applicable pre- and post-Contingency stability limits)
 - Voltage stability ratings (applicable pre- and post-Contingency voltage stability)
 - System voltage limits (applicable pre- and post-Contingency voltage limits)

Terms (cont'd)

➤ Facility

• A set of electrical equipment that operates as a single Bulk Electric System Element (e.g., a line, a generator, a shunt compensator, transformer, etc.)

Equipment Rating

• The maximum and minimum voltage, current, frequency, real and reactive power flows on individual equipment under steady state, short-circuit and transient conditions, as permitted or assigned by the equipment owner.

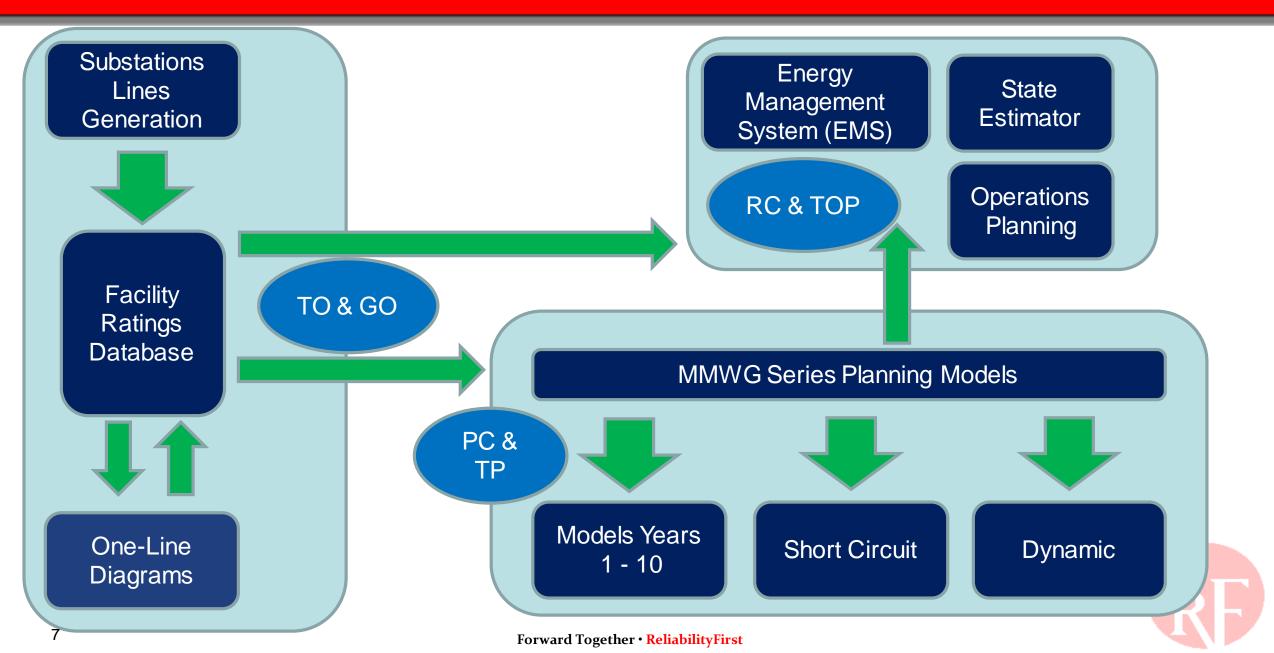
Facility Rating

• The maximum or minimum voltage, current, frequency, or real or reactive power flow through a facility that does not violate the applicable equipment rating of any equipment comprising the facility.

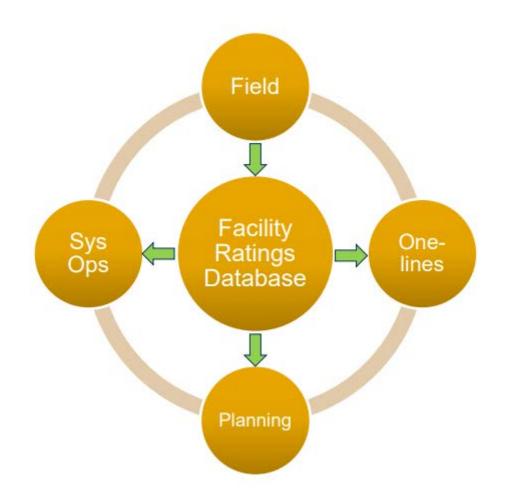
Example Facility Data Tracking

Facility	Facility Rating Sample FAC008 R6 Facility Limits: MRC Facility Limits: MRC Substation: MRO1	IO2 to MRO1	Summer Normal (SN) 1030 1030	(SE) 1043	Winter Normal (WN) 1221 1221	Winter Emergency (WE) 1231 1231	Facility	Rating
	Equipment	Description	SN	SE	WN	WE		
	Conductor	1 - 795.0 kcmil ACSR 26/7 Drake, JUMPER, 200°F Norm, 300°F Emer	1030		1221	1524		
	Trap	2000A, B-Phase	2040		2100	2400		
	Conductor	2 - 1590.0 kcmil AAC 61 Coreopsis, JUMPER, 200°F Norm, 275°F Emer	3096	4000	3668	4404		
	Switch	1600A, Switch #78551 1, 400	1705	2126	2264	2482		
	Conductor	2 1272.0 kcmil AAC 259 Rope-Lay, JUMPER, 200°F Norm, 275°F Emer, 5% derate proximity effect	2637	3401	3124	3743		
	СТ	1200:5 Full Ratio, 1200:5 Conn Tap, RF = 2.00, Bushing (Bkr)-Type	2400	2400	2400	2400		
Equipmont	Circuit Breaker	1600 A, OIL, Device #78661	1704	1894	2101	2264		
Equipment	Relay	Forward.Setting	5631	5631	5631	5631		
	Relay	Non-Directional Thermal	3600	3600	3600	3600)	
Ratings	RTU	RTU	13708	13708	13708	13708		
5	CT	1200:5 Full Ratio, 1200:5 Conn Tap, RF = 2.00, Bushing (Bkr)-Type	2400	2400	2400	2400	·	
	Conductor	2 - 1272.0 kcmil AAC 259 Rope-Lay, JUMPER, 200°F Norm, 275°F Emer, 5% derate proximity effect	2637	3401	3124	3743		
	Switch	1600A, Switch #78661-B, AO6	1795	2120	2264	2482		
	Conductor	1 - 5.0" Al Tube, <u>Sch</u> 40, 6063-T6, BUS	4608	5075	5590	5998		
	From- To Nodes	Line Segments - Description	SN	SE	WN	WE		
	MRO1 to STR 125	1 - 795.0 kcmil ACSR 26/7 Drake, 200°F Norm, 245°F Emer	1030	1214	1221	1367		
	STR 125 to MRO2	1 - 795.0 kcmil ACSR 26/7 Drake, 200°F Norm, 203°F Emer	1030	1043	1221	1231		
	Substation: MRO2 Owner: Utility B							
	Equipment	Description	SN	SE	WN	WE		
	Conductor	1 - 795.0 kcmil ACSR 26/7 Drake, JUMPER, 200°F Norm, 300°F Emer	1030	1402	1221	1524		
	Trap	1200A, B-Phase	1224	1344	1260	1440		

Forward Together • ReliabilityFirst


NERC Reliability Standards

> Numerous Standards touch upon Facility Ratings


- FAC-008-3 confirm TO and GO have Facility Ratings consistent with the Facility Ratings Methodology (FRM)
- FAC-014-2– confirm RC and TOP SOLs are consistent between Real-time models and models used for Operational Planning Analysis
- FAC-014-2 confirm PA/PC and TP SOLs are consistent in planning models
- TOP-001-4 and TOP-002-4 confirm TOP SOLs are consistent between Realtime and the models used for Operational Planning Analysis
- PRC-023-4 and PRC-025-2 Transmission and Generator Relay Loadability based upon Facility Ratings

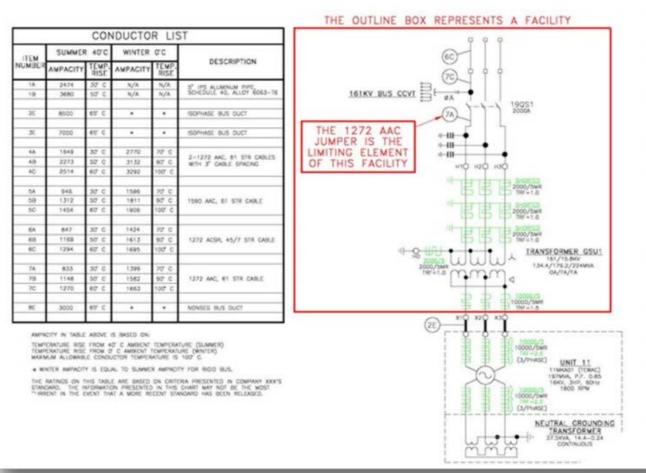
Facility Rating Locations – Tools and Applications

Facility Rating Locations

Forward Together • ReliabilityFirst

What to Expect from Compliance Monitoring

Prior to the engagement


- Data Sampling will be performed, and a complete list of all transmission and generation facilities will be requested.
- From that list, certain facilities will be selected.
- Evidence will need to be provided showing the Facility, Equipment Ratings, Facility Ratings, etc.

> Don't be surprised if...

- You are requested to provide one line diagrams of the selected Facilities
- You are asked to discuss how you define "terminal equipment" or the difference between normal and emergency Ratings
- Even if FAC-008-3 R3 isn't in scope, you are requested to provide your Facility Ratings Methodology to ensure it is being followed

What to Expect from Compliance Monitoring (cont'd)

Please remember to include source documents/evidence corroborating Ratings

Forward Together • ReliabilityFirst

What to Expect from Compliance Monitoring (cont'd)

- During the engagement, a walkthrough of various Facility Rating processes will be performed, which may include:
 - The use of a Facility Ratings Database or asset management system
 - Processes around equipment commissioning, modification and retirement
 - Processes around the flow of Ratings data from the field to the one line diagrams, Facility Ratings Database, EMS, models, etc.
 - Internal controls around the Facility Ratings processes

What to Expect from Compliance Monitoring (cont'd)

Field verifications

- Substation field inspections may take place to verify the Facility and Equipment Ratings provided.
 - This will be a collaborative effort between CM (Compliance Monitoring) staff and the entity to determine which substations to visit, safety protocols, etc.
- Within the control room, Facility Ratings within the EMS may be compared to those within the Facility Ratings database.
- The Facility Ratings provided to the Reliability Coordinator through PJM's eDART or MISO's CROW systems may be verified to ensure they align with those within the EMS and Facility Ratings database.

Facility Ratings CMEP Practice Guide

NORTH AMERICAN ELECTRIC RELIABILITY CORPORATION

ERO Enterprise CMEP Practice Guide

Evaluation of Facility Ratings and System Operating Limits June 17, 2020

Background

In support of successful implementation of and compliance with the North American Electric Reliability Corporation (NERC) Reliability Standards, the Electric Reliability Organization (ERO) Enterprise¹ adopted the Compliance Guidance Policy.² The Compliance Guidance Policy outlines the purpose, development, use, and maintenance of guidance for implementing Reliability Standards. According to the Compliance Guidance Policy, Compliance Guidance includes two types of guidance – Implementation Guidance and Compliance Monitoring and Enforcement Program (CMEP) Practice Guides.³

Purpose

CMEP Practice Guides are developed solely by the ERO Enterprise to reflect the independent, objective professional judgment of ERO Enterprise CMEP staff (CMEP staff), and, at times, may be initiated following policy discussions with industry stakeholders. Following development, they are posted for transparency on the NERC website. It is to be noted, especially to registered entities using this guide as a reference, that while some aspects of this guide may assist CMEP staff directly in determining compliance, some parts of the guide are to assist CMEP staff in understanding how an entity mitigates risk in order to inform risk-based compliance monitoring. This understanding of the controls to mitigate risk can affect monitoring activities, such as substation walkdowns, requests for information, and adjustments to an entity's compliance oversight plan.

- The CMEP (Compliance Monitoring and Enforcement Program) Practice Guide provides guidance for CMEP staff, however, since it is publicly available, it also provides insights that Registered Entities can benefit from.
- CMEP staff will use this document as a guide to assist in the review of Facility Ratings over the aforementioned Standards in the hopes of promoting consistency across the ERO.
- However, each case will be evaluated based on the specific facts and circumstances for compliance monitoring determinations.

> Validation of Facility Ratings in the EMS and models

- Compare Real-time models and Facility Ratings to identify any discrepancies. If there are, is there a valid reason?
- Do Real-time models use the most limiting applicable Equipment Rating that comprises that Facility?
- How are temperatures adjusted or seasonal ambient ratings reflected in Realtime operations? How are temporary Rating changes accounted for?

> Dynamic Facility Ratings

 If Real-time ratings based on certain factors (e.g., temperature, wind speed, etc.) are used, how is that calculation consistently applied and updated within Realtime operations?

Field Verification of Equipment

- As stated previously, physical walk-downs of substations to verify Facility Ratings are consistent with documentation will most likely be performed. Normally, this will include 2 to 3 substations relatively close to the engagement location.
- If walk-downs are not currently being performed, the ERO strongly encourages the practice to properly validate Facility Ratings.
- If walk-downs are performed for all or some substations, discuss how this is achieved. Is it risk-based or simply on voltage level? Is it performed during commissioning? How is it documented?
- Keep in mind, if walk-downs are being performed by your entity to a level to which the CM staff believes the risk is addressed, walk-downs by the CM staff may not be necessary during the engagement.

Design Ratings

- "CMEP staff shall not accept design drawings as <u>sole</u> evidence of Equipment Ratings."
- Please verify Equipment Ratings, not assuming that the design drawings accurately reflect the actual installed equipment.
- Follow your Facility Ratings Methodology ensuring that Equipment and Facilities are rated accordingly.

> Internal Controls

- As with all Reliability Standards, the review of internal controls will be a focus.
- Communicate with CM staff the controls in place and how they help mitigate the risks.

> Use these to assess your current practices

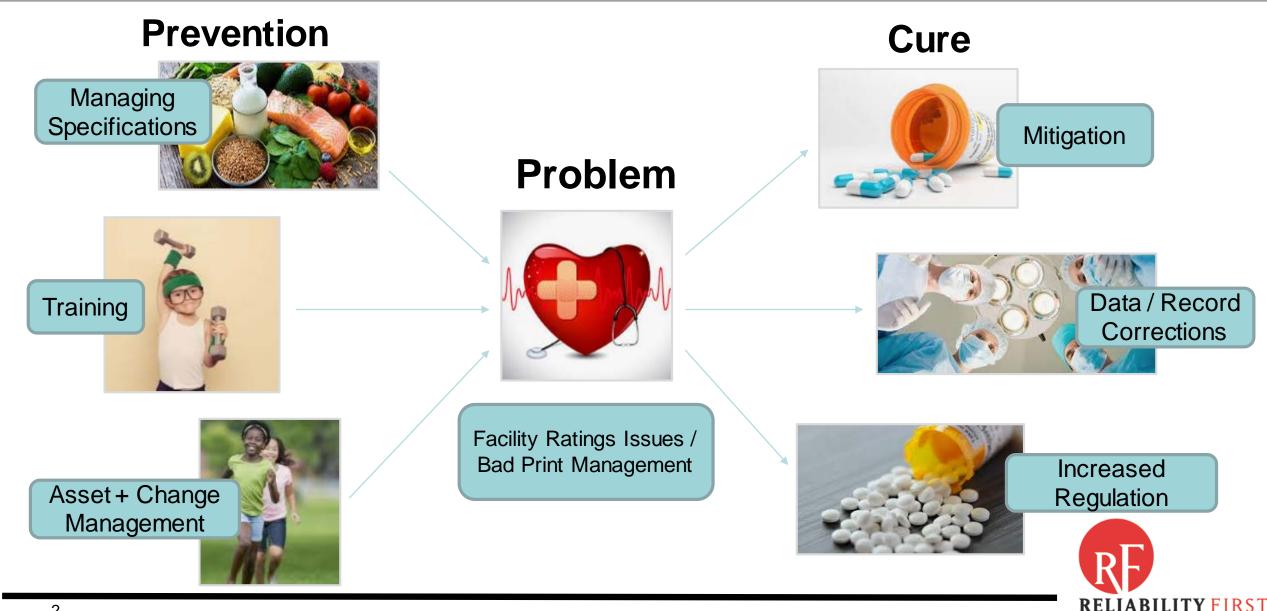
When reviewing compliance with FAC-008-3 R6, the following practices should be considered with the sampled Facilities:

- Identification of each BES Facility and its Facility Rating is consistent with FRM
- Identification of all equipment comprising the Facility
- Ratings of all the equipment comprising a Facility are consistent with FRM
- Identification of the Most Limiting Series Element (and if applicable, the next Most Limiting Series Element)
 - For each owner and each joint owner
 - Identification of Normal and Emergency Ratings, as appropriate
- Comparison of Facility Ratings between Facility Rating database and:
 - Planning models
 - EMS/SCADA (tools used to alarm and perform RTCA)
 - One-lines and/or design drawings
 - Actual field equipment

Closing Remarks

- Understand that Facility Ratings reach into numerous areas of Operations and Planning
- Use the resources available such as the CMEP Practice Guide and ERO Standard Application Guide to evaluate your current practices (https://www.nerc.com/pa/comp/guidance/Pages/default.aspx)
- RF is always willing to discuss any questions you may have. Feel free to contact me:
 - Derek Kassimer, Principal Analyst, Risk Analysis & Mitigation
 - 216-503-0638
 - derek.kassimer@rfirst.org

aware Illinois Indiana Kentucky Maryland Michigan New Jersey insylvania Ohio Tennessee Virginia Washington, DC West Virginia Wisconsin laware Illinois Indiana Kentucky NewJersey Michigan Maryland hio Pennsylvania Tennessee Virginia Washington, DC West Virginia Wisconsin elaware Illinois Indiana Michigan Maryland Kentucky New Jersey OUESTIONS & ANSWERS Wisconsin entucky Illinois Indiana Maryla Delaware Michigan New Jersey Forward Together ReliabilityFirst Vest Virginia Pennsylvania Tennessee Virginia Washington, DC Ohio Wisconsin elaware Illinois Indiana Kentucky Maryland Michigan NewJersey rginia Pennsylvania Tennessee Ohio Washington, DC West Virginia Wisconsin laware Illinois Indiana Kentucky Maryland Michigan NewJersey p Pennsylvania Tennessee Virginia Washington, DC West Virginia Wisconsin Illinois Delaware Kentucky NewJersey Michigan Maryland na see Pennsylvania Washington, DC Virginia Ohio West Virginia Wisconsin



Internal Controls and Facility Ratings

Denise Hunter – Principal Technical Auditor, Compliance Monitoring Brian Hallett – Principal Reliability Consultant, Entity Engagement RF Fall Virtual Workshop August 25, 2020

Why Focus On Controls?

Framework

	Drive Consist	tency + Efficiency + Ide	ntify Gaps	
ACM – BU1 • Act 1 • Act 2 EXID – BU1 • Act 1 • Act 2 GPs (Sustaining)	ACM – BU2 • Act 1 • Act 2 EXID – BU2 • Act 1 • Act 2 GPs (Sustaining)	ACM – BU3 • Act 1 • Act 2 EXID – BU3 • Act 1 • Act 2 GPs (Sustaining)	ACM – BU4 • Act 1 • Act 2 EXID – BU4 • Act 1 • Act 2 GPs (Sustaining)	ACM – BU5 • Act 1 • Act 2 EXID – BU5 • Act 1 • Act 2 GPs (Sustaining)
Tx Planning	Sub/T-line Design	Commissioning	Operations	Storm/ Emergency
 Process to develop ratings based on design drawings and one-lines following FAC-008 methodology Process to verify that ratings in the system- of-record are aligned with planning and operations models 	 Drawing/Print version controls Process to issue drawing packages to various engineering groups Process to update records based on field mark-ups 	 Procedure to make changes to official engineering drawings to reflect changes made in the field Checklist to notify owners of systems- of-record that new equipment has been placed in-service 	 Process to notify Tx Planning + Sub/T- Line Design should inconsistent facility ratings be identified 	 Process to notify systems-of-record owners that equipment has failed Process to notify systems-of-record owners that new equipment has been placed in-service
	Drive Mi	tigation of Risks		RF

RELIABILITY FIRST

Current State

FAC-008-3 Effective Date 1/1/2013

- 2015 to Current opportunities found on audit: 52 PNC/AoC/Recommendations, 6 Positive Observations Note: Many more FAC-008-3 fall downs were self reported
- Various opportunities: Change management, Commissioning, Verification/Validation, Mergers and Acquisitions
- > We're still talking about it

COSO

Component	Principles	Point(s) of Focus	Examples	
		1.1 Tone at the Top	Management attitude, values and control, consciousness of personnel; Importance of integrity and ethical values	
		1.2 Mission Statement	Identifies organization's purpose	
	1. Demonstrate commitment to integrity and ethical values	1.3 Standards of conduct	Expectations of Board and Sr. Mgmt concerning integrity and ethical values are defined and understood by all levels of organization, as well as outside sources with processes in place to evaluate performance against expected conduct	 Control Environment Risk Assessment Internal Controls Information and Communication
		1.4 Address deviations timely	Unethical, immoral, etc. activities addressed appropriately and timely	 Monitoring
	2. Exercise oversight of the internal control program	2.1 Oversight structure defined	Board of Directors, Supervisory Board, etc.	
		2.2 Applies relevant expertise	Appropriate decisions to achieve objectives	
		2.3 Operates independently	Independent from organization	
		2.4 Oversight of the internal control program	Oversees management design, implementation, operation of the internal control program	
Control	3. Establish structure, reporting, authority, responsibilities	3.1 Internal Control Program documented	Document the "Who, What, Where, When, Why" of the internal control program	
Environment		3.2 Reporting lines established	Reliably report quality information	
		3.3 Assign responsibility and delegation of authority	Provides ownership of the control program and ensures segregation of duties	
		4.1 Establishes Policies and practices	Appropriate policies and procedures ensure all applicable risk has been addressed	
		A 2 Addresses comnetence gans	Organization has identified competence gaps and either established	RF

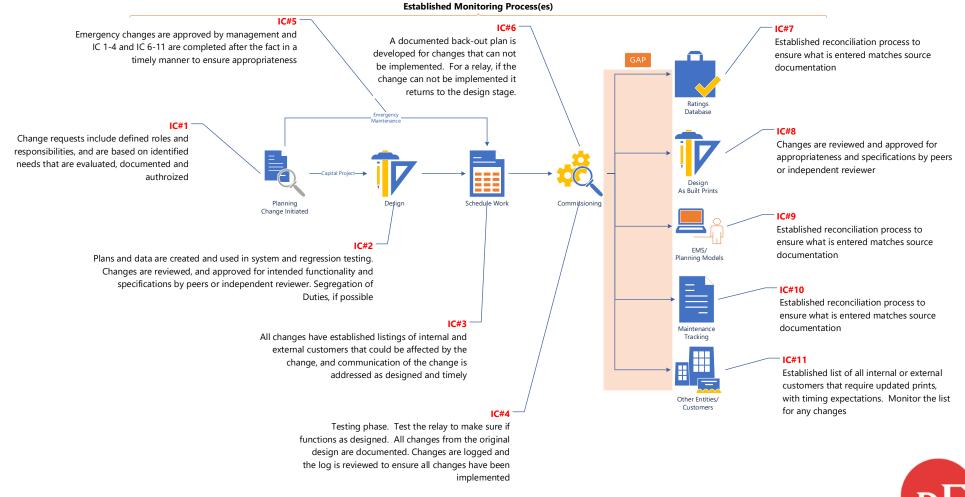
Establish a Baseline

> Without a valid baseline all other changes are suspect.

Create a schedule including:

- Cost baselines
- Identify the resources needed
- Estimate the number of hours to complete each task

> This could be a large lift, therefore BE REALISTIC!



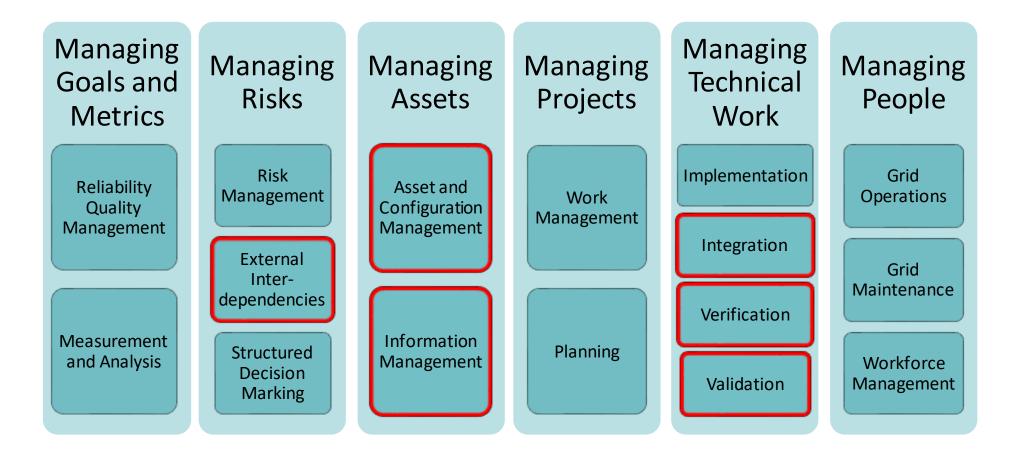
Change Management

- Establish a plan to identify changes to operations, operating conditions or deviations from an established baseline.
- Establish a change approval process.
- Develop a change implementation program that details proper coordination of approved asset changes.
- > Monitor the change process.
- > Document changes, following the change trail from conception to monitoring.
- > Define an emergency change process.

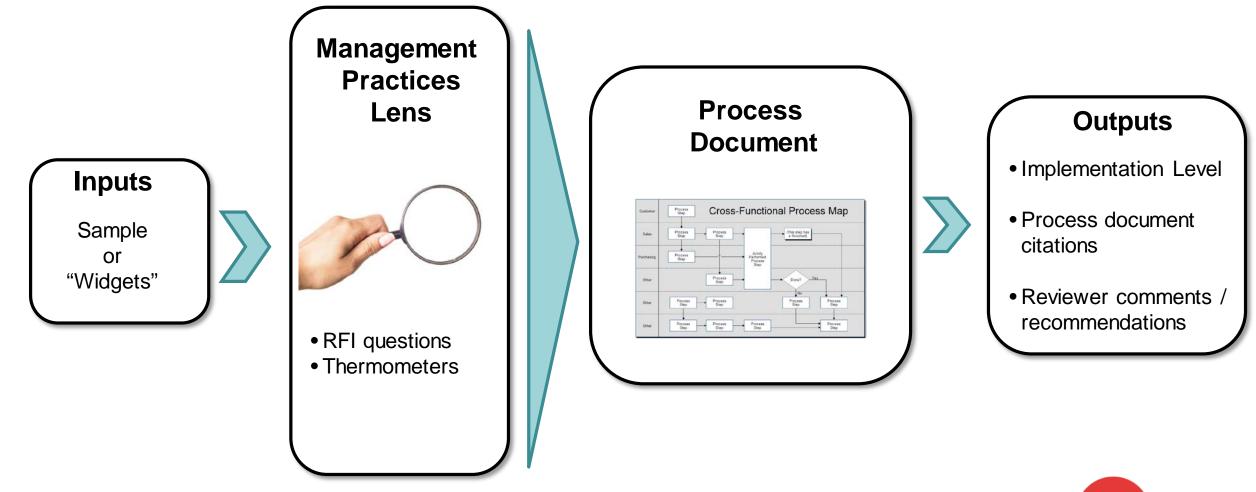
Change Process Flow

Mergers and Acquisitions

- 1) Provide increased visibility and transparency by identifying key risks related to the strategic transaction change (i.e., highlight potential operational risks).
- 2) Identify gaps in the integration or separation project management plan (i.e., determine if all required NERC responsibilities have been met and are documented).
- 3) Call out the impact that the acquisition and its integration, or the divestiture, may be having on other parts of the business and established internal controls.
- 4) Support management's prioritization of risks of transition and organizational readiness for the effective and efficient allocation of resources to address the risks and controls.
- 5) Provide increased visibility of changes impacting established processes and controls.


Managing Your Business Through Internal Controls

Internal control or an internal control system is the integration of the activities, plans, attitudes, policies and efforts of the people of an organization working together to provide reasonable assurance that the organization will achieve its objectives and mission.



RF Management Practices

Appraisal Process

Management Practice: Asset and Configuration Management

The purpose of Asset and Configuration Management (ACM) is to establish an inventory of assets and configuration items, define the attributes of those assets and items, and maintain their integrity in the context of reliability and resilience.

Objective 1	Establish assets and configuration items inventory					
Activity 1.1	Identify assets and configuration items					
Activity 1.2	Define asset and configuration item attributes					
Activity 1.3	Establish inventory and configuration control systems					
Activity 1.4	Establish inventory and configuration baselines					
Objective 2	Control Changes					
Activity 2.1	Establish change control					

Activity 2.2 Control changes to assets and configuration items and baselines

Objective 3 Verify Integrity

- Activity 3.1 Establish and maintain change records
- Activity 3.2 Perform assessments

Asset and Configuration Management Thermometer

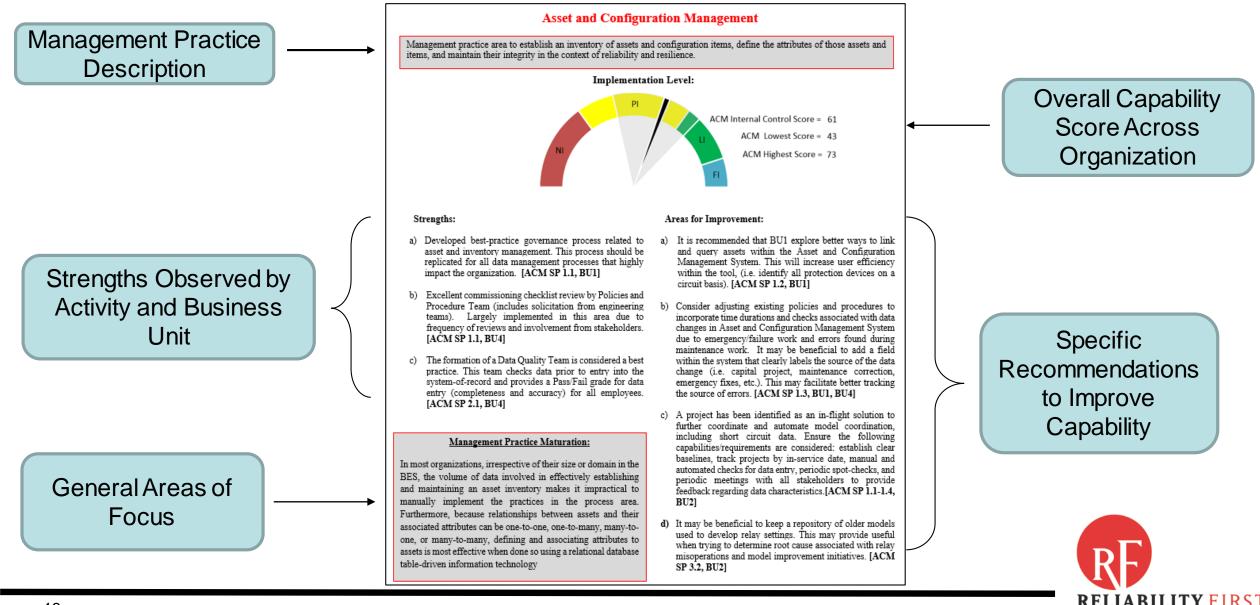
		A	ASSET & CONF	IGUKATION	MANAGEME	NI (ACM)		
	Activity 1.1: Establish assets & configuration items inventory	Activity 1.2: Define assets & configuration item attributes	Activity 1.3: Establish inventory & configuration control systems	Activity 1.4: Establish configuration baselines	Activity 2.1: Establish change control	Activity 2.2: Control changes to assets, configuration items & baselines	Activity 3.1: Establish & maintain change records	Activity 3.2: Perform assessments
— —								
	Full assessment process in place	Fully defined; formal interview	Fully developed & automated system	Fully established baselines	Fully established process	Change control owner and roles	Organized system in place	Fully perform assessments
Ξ		process				clearly defined	that tracks change records	
	Assets updated but not frequent enough	Defined but no 3 rd consulted; need benchmarks	Organized system but needs some updating	Some regular assessments performed; all	Established process but lacks collaboration	Responsibilities defined but not all stakeholders	Change records kept, but not all criteria tracked	Low frequency of not completing assessments
Ξ				assets covered		defined		
Ē								
-	Lack of process to regularly update	Out of box vendor default attributes	Some inventory or configuration, but not well managed	Less regular assessments; frequency based	Process in place but not well maintained or	Owner exists but responsibilities not defined	Change records not consistent	Reactive contro
_				on asset; not all assets covered	defined			
=	No inventory established	Not defined	No inventory system	No baselines established	Not established or responsible party not assigned	No owner of configuration changes	Change records not kept or missing	No assessment performed

ASSET & CONFIGURATION MANAGEMENT (ACM)

Generic Goals and Practices

Generic practices (GP) relate to process **institutionalization**, which measure an entity's ability to sustain the effectiveness of the internal controls around the management practices evaluated.

- **GG 1.0** Achieve the specific goals
 - GP 1.1 Perform specific practices


GG 2.0 Perform and institutionalize a <u>managed</u> process

- GP 2.1 Establish and maintain governance
- GP 2.2 Plan and monitor the process
- GP 2.3 Provide resources for the process
- GP 2.4 Define responsibility and stakeholder involvement
- GP 2.5 Education and train the process
- GP 2.6 Manage and control the process
- GP 2.7 Objectively monitor the process
- **GG 3.0** Perform and institutionalize a <u>defined</u> process
 - GP 3.1 Define the process
 - GP 3.2 Improve the process

Report Out

Summary

- Each Business Unit needs to deploy the appropriate controls to mitigate the various risks.
- A model-based framework can be used to assess similar types of controls across an organization, focusing on:
 - 1. Gaps that need to be filled
 - 2. Increasing maturity
 - 3. Sharing best practices
- Both approaches work together to promote "Operational Excellence"

aware Illinois Indiana Kentucky Maryland Michigan New Jersey insylvania Ohio Tennessee Virginia Washington, DC West Virginia Wisconsin laware Illinois Indiana Kentucky NewJersey Michigan Maryland hio Pennsylvania Tennessee Virginia Washington, DC West Virginia Wisconsin elaware Illinois Indiana Michigan Maryland Kentucky New Jersey OUESTIONS & ANSWERS Wisconsin entucky Illinois Indiana Maryla Delaware Michigan New Jersey Forward Together ReliabilityFirst Vest Virginia Pennsylvania Tennessee Virginia Washington, DC Ohio Wisconsin elaware Illinois Indiana Kentucky Maryland Michigan NewJersey rginia Pennsylvania Tennessee Ohio Washington, DC West Virginia Wisconsin laware Illinois Indiana Kentucky Maryland Michigan NewJersey o Pennsylvania Tennessee Virginia Washington, DC West Virginia Wisconsin Illinois Delaware Kentucky NewJersey Michigan Maryland na see Pennsylvania Washington, DC Virginia Ohio West Virginia Wisconsin

Facility Ratings & Commissioning Process

Jim Kubrak Manager, Operations and Planning Monitoring RF Fall Virtual Workshop

August 25, 2020

Agenda

- Discuss the industry shift in transmission investments
- Review entity feedback from the questionnaire
- Discuss the importance/process of commissioning
- Identify the trend in gaps and failure modes we are seeing from entities
- Provide suggestions on best practices we have seen so far on mitigating risk

DOE Annual U.S. Transmission Data Review March 2018

- Investments in Transmission almost doubled between 2010 to 2015
- With this amount of investment focus on upgrading the BES change in a shorter time span results in a heightened risk in change management programs

Department of Energy | March 2018

2.4 Transmission Investment

Information on transmission investment is taken from EEI, which publishes an annual summary of information on transmission investment by member IOUs (investor-owned utilities), which includes investment and projected investment figures derived from EEI surveys and investor presentations, supplemented with additional data from FERC Form 1 filings (See Figure 2-9.). Note that the investment totals are presented in nominal dollars. Investments by public power and cooperative utilities are not included.

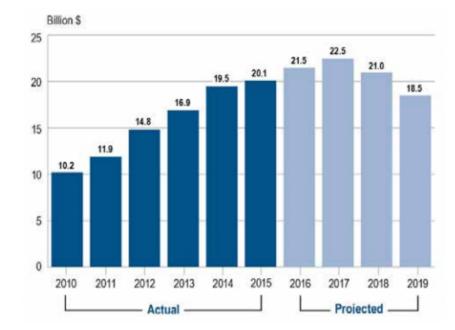
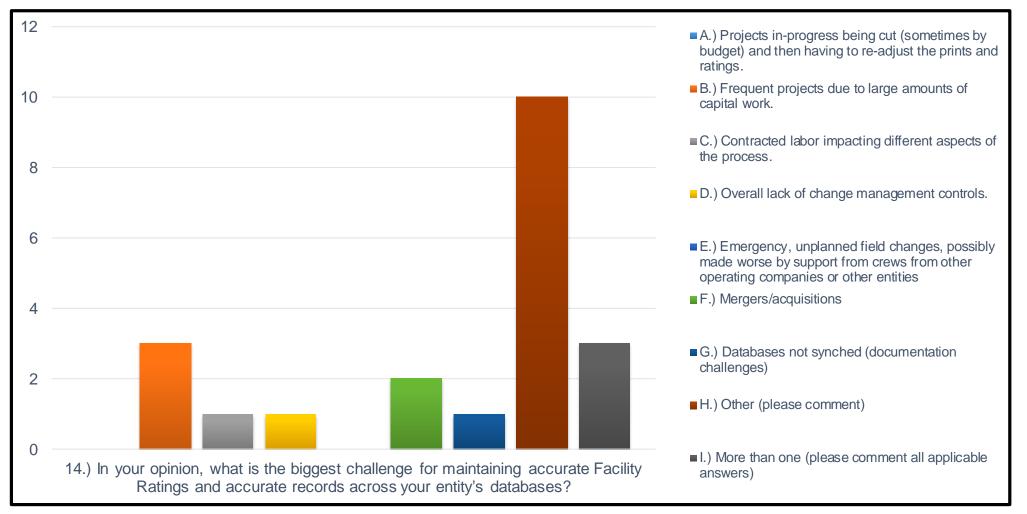
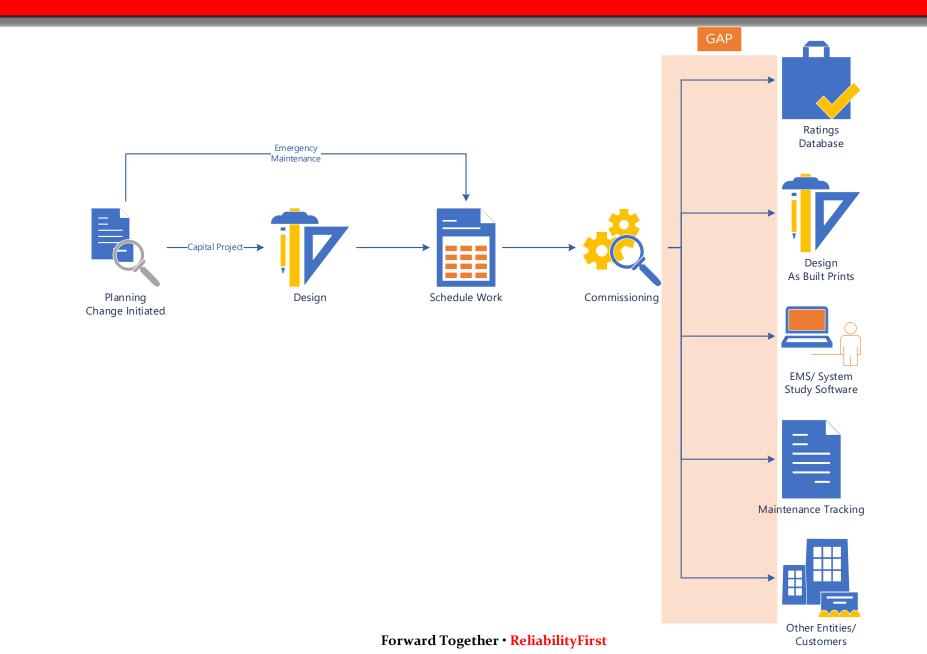


Figure 2-9. Historical and projected transmission investment by shareholder-owned utilities Source: EEI (2016): http://www.eei.org/issuesandpolicy/transmission/Pages/transmissionprojectsat.aspx

Commissioning Importance/Process


- Last verification that the design/equipment works as intended
- Coordination between multiple personnel/groups
- Information from the commissioning process needs to be provided to the key personnel who update that information in the ratings database, EMS model, etc.
- Once all sign offs are completed, In-Service load checks (if applicable) and visual inspections are performed
- As-built prints need to be provided to the personnel responsible for maintaining asbuilt prints


FAC-008 Questionnaire

In your opinion, what is the biggest challenge for maintaining accurate Facility Ratings and accurate records across your databases?

Forward Together • ReliabilityFirst

Most Common Gap in Facility Ratings

Commissioning Failure Modes: Findings Through RF Data

- Single Point of Failure
- Data Entry Human Error
- As-built prints not getting back to proper personnel
- Incorrect relay settings being applied
- Errors in information transfer to new software systems
- Merger and Acquisition Commissioning differences

Understanding Failures

> Severity

> Occurrence of the failure

Detection

≻ Risk

Best Practices Through Feedback & Engagements

- 5 year review (20% per year) of all facility ratings
- Commissioning Checklist sign offs before energization
- 2nd-party reviews on facility ratings data entry with field
- Eliminate single point of failure

Reference Documentation - Power System Relaying and Control Committee

Commissioning

-IEEE PSRC, WG I-25:Commissioning Testing of Protection Systems

≻Design

-IEEE Quality Assurance for Protection and Control Design

<u>https://www.pes-</u> psrc.org/kb/published/reports.html

You Are The Change!

>Job Function

- PCC
- Project Manager
- Commissioning Engineer
- Technician
- PNA Engineer
- Management/Leadership

aware Illinois Indiana Kentucky Maryland Michigan New Jersey insylvania Ohio Tennessee Virginia Washington, DC West Virginia Wisconsin laware Illinois Indiana Kentucky NewJersey Michigan Maryland hio Pennsylvania Tennessee Virginia Washington, DC West Virginia Wisconsin elaware Illinois Indiana Michigan Maryland Kentucky New Jersey OUESTIONS & ANSWERS Wisconsin entucky Illinois Indiana Maryla Delaware Michigan New Jersey Forward Together ReliabilityFirst Vest Virginia Pennsylvania Tennessee Virginia Washington, DC Ohio Wisconsin elaware Illinois Indiana Kentucky Maryland Michigan NewJersey rginia Pennsylvania Tennessee Ohio Washington, DC West Virginia Wisconsin laware Illinois Indiana Kentucky Maryland Michigan NewJersey p Pennsylvania Tennessee Virginia Washington, DC West Virginia Wisconsin Illinois Delaware Kentucky NewJersey Michigan Maryland na see Pennsylvania Washington, DC Virginia Ohio West Virginia Wisconsin

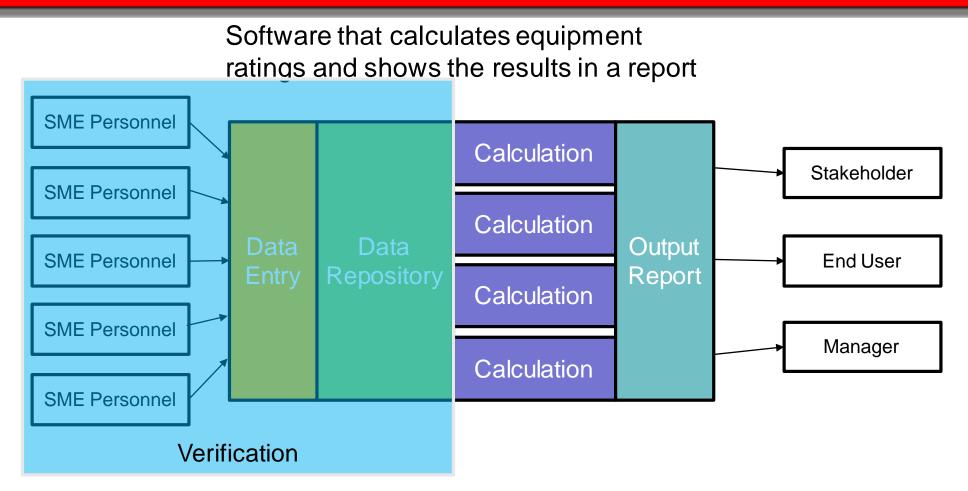
Verification and Validation (V&V) of Facility Ratings

Johnny Gest Manager, Engineering and System Performance RF Fall Virtual Workshop

August 25, 2020

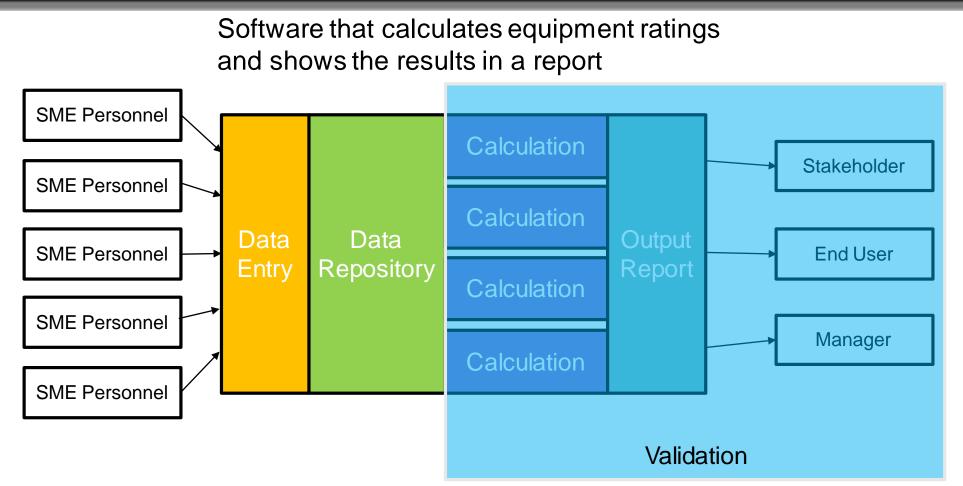
Objectives

- Explain the difference between Verification and Validation and when each is applicable
- > Provide insight with V&V key concepts and examples
- NOT intended to be a mandatory prescribed method to implement V&V
- >V&V activities developed based on risk, impact and budget

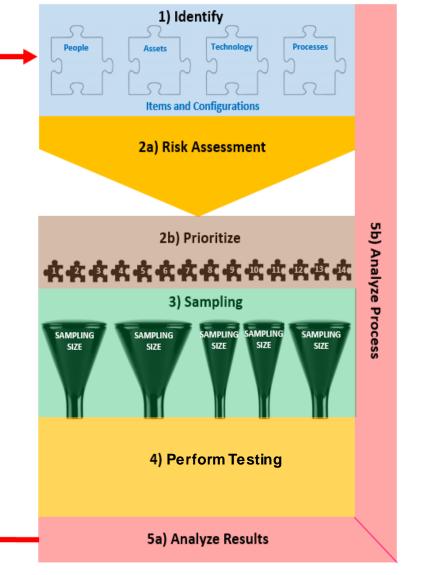

V&V Definitions

Requirement – Defined characteristic or performance parameters associated with electrical equipment

- Verification The act of ensuring that all relevant electrical equipment meets applicable Requirements
 - Perform review/testing *prior* to implementation
- Validation The act of ensuring that electrical equipment operates correctly and pursuant to its intended purpose in its environment
 - Perform review/testing *after* implementation

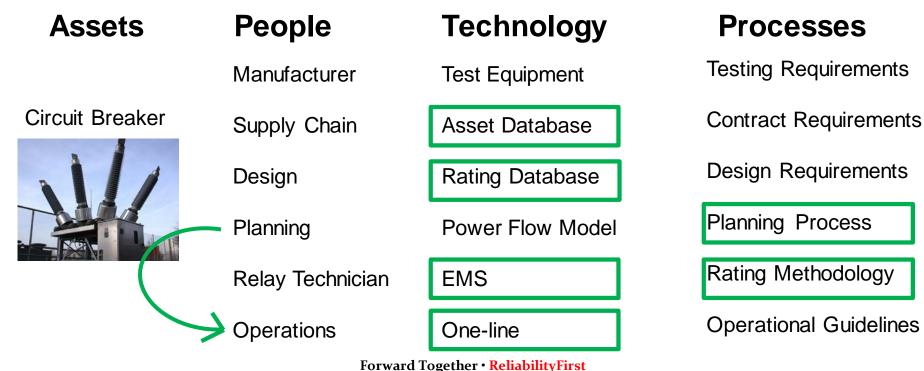

Verification Example

- > Performed by technical personnel with experience on equipment and tool
- Identify risks associated with erroneous data from the field

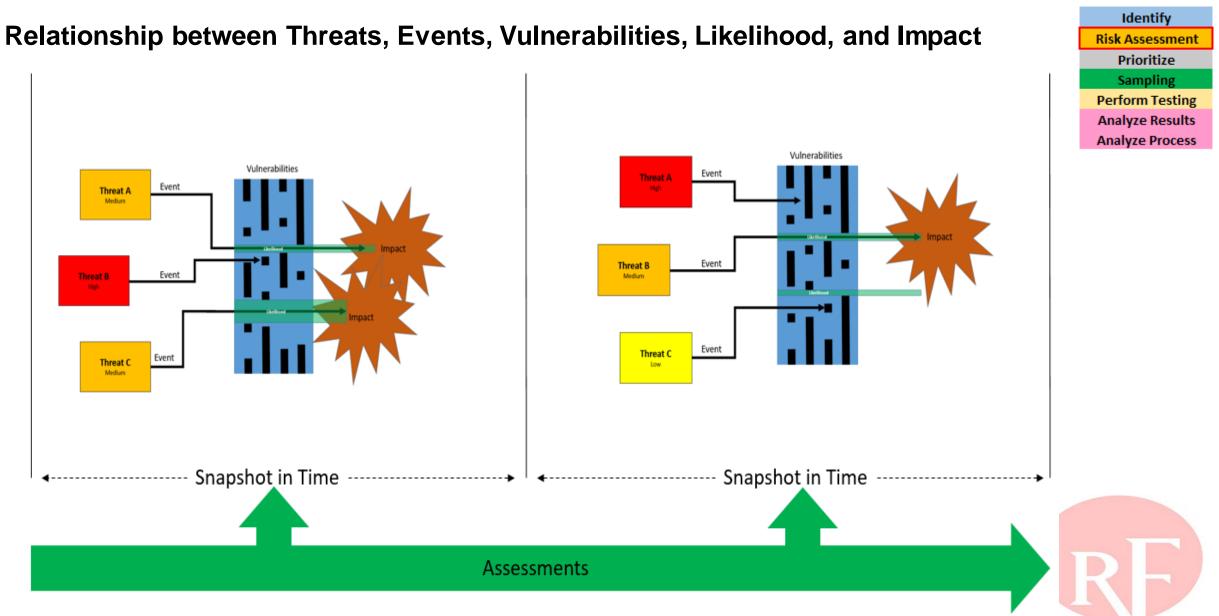

Validation Example

- Performed by end users and stakeholders (can interpret/communicate results)
- Identify value associated with testing

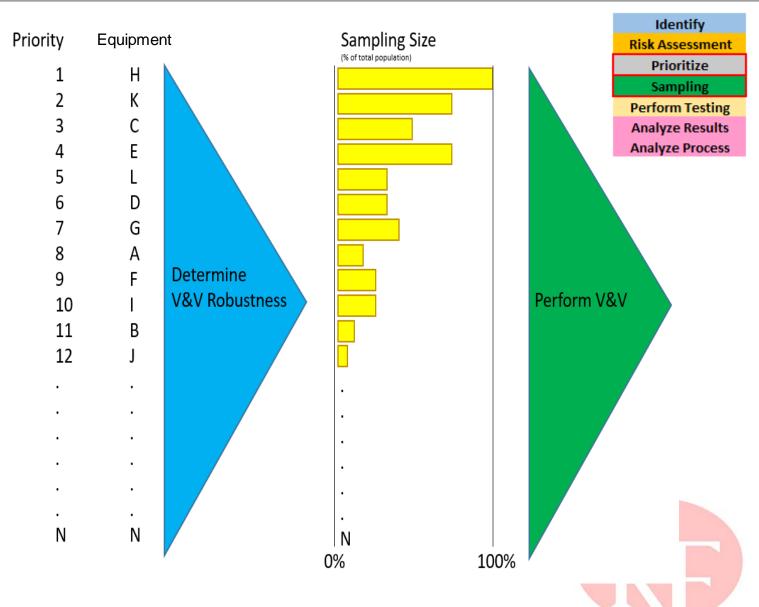
Overall V&V Process


- 1. Identify create a list of critical equipment and various relationships
- 2a. Risk Assessment determine the likelihood and impact that an error could occur
- **2b. Prioritize** based on the risk assessment results, rank equipment based on criticality
- **3. Sampling** determine the rigor of V&V activities to be performed (i.e., sampling size)
- 4. **Perform Testing** prepare, develop procedures and criteria, test, and record results
- 5a. Analyze Results check for failure trends
- **5b. Analyze Process** check for deviation from actual testing versus the V&V process

Forward Together • ReliabilityFirst


Identify

- Identify assets AND the people, technology and processes related to those assets
- SME feedback is critical to ensure coverage of all equipment and relationships


Example

Risk Assessment

Prioritize & Sampling

- Risk Assessment determines the Impact and Likelihood; Risk = Impact x Likelihood.
- Based on risk priority, determine the time, resources, effort, frequency, thoroughness and budget of V&V activities.
- Depending on the equipment population, it may be pertinent to perform V&V activities for only a portion of the population.
- Reducing the number of items that require V&V activities reduces resource allocation and cost, which may allow for more rigorous V&V activities.

Perform Testing

Procedure Criteria Prepare Pass Results Documentation Fail Requirements Procedure Criteria Personnel Outside Tolerance Tools Results Acceptable Documentation **Dutside Tolerance** Location Procedure Criteria Environment Outside Tolerance i e e 🤶 Results Documentation Acceptable utside Tolerance Procedure Criteria Pass Results Documentation Fail Procedure Criteria Pass Results Documentation Fail Review

Identify Risk Assessment Prioritize Sampling Perform Testing Analyze Results Analyze Process

Adherence to V&V Process

- Document any deviation from the testing procedures and positive or negative observations during testing
- Review V&V procedures on a periodic basis; involve testers and stakeholders
- Review should allow for quick escalation of high risk observations (i.e., safety related)

Analyze V&V Results and Process

Failure Trends

- > Percentage of actual failures could indicate latent failures in the remaining population
- > May need to perform additional V&V activities or implement mitigation activities
- Failure trend results should be communicated and incorporated into future risk assessments

External V&V

What approach should be taken for equipment or data produced externally?

- > Do your research
- Requirements are developed to reduce error
- Track performance against Requirements
- Performance results indicate level of V&V
- Be transparent with results.....benchmark performance and communicate results

Subcontractor V&V

External sources may have to utilize an outside resource or Subcontractor

Be aware. Require that external sources provide notification when using Subcontractors

> Develop comprehensive requirements for use of Subcontractors:

- Adhere to organizational policies, procedures, and processes (especially related to safety and security)
- Have acceptable personnel training and certification (i.e., from a security perspective, it may be necessary to only allow Subcontractors from certain countries)
- Utilize appropriate equipment and tools

> Ensure that external source is periodically assessing Subcontractor performance

V&V Tips

- Explore other high risk industries for additional insight V&V techniques
- Collaborate and share effective V&V techniques with industry peers
 - ReliabilityFirst can help: Assist Visits, Workshops, Tech Talk with RF, newsletter articles, etc.
- Develop controls that increase both quality and efficiency (templates and checklists)
- > Take advantage of previously performed V&V activities
- Take advantage of V&V toolsets that have already been developed
- Leverage resources performing other activities to support V&V
- > Utilize automation when feasible

aware Illinois Indiana Kentucky Maryland Michigan New Jersey insylvania Ohio Tennessee Virginia Washington, DC West Virginia Wisconsin laware Illinois Indiana Kentucky NewJersey Michigan Maryland hio Pennsylvania Tennessee Virginia Washington, DC West Virginia Wisconsin elaware Illinois Indiana Michigan Maryland Kentucky New Jersey OUESTIONS & ANSWERS Wisconsin entucky Illinois Indiana Maryla Delaware Michigan New Jersey Forward Together ReliabilityFirst Vest Virginia Pennsylvania Tennessee Virginia Washington, DC Ohio Wisconsin elaware Illinois Indiana Kentucky Maryland Michigan NewJersey rginia Pennsylvania Tennessee Ohio Washington, DC West Virginia Wisconsin laware Illinois Indiana Kentucky Maryland Michigan NewJersey p Pennsylvania Tennessee Virginia Washington, DC West Virginia Wisconsin Illinois Delaware Kentucky NewJersey Michigan Maryland na see Pennsylvania Washington, DC Virginia Ohio West Virginia Wisconsin

WRAP-UP AND WHAT'S NEXT AT RELIABILITYFIRST

Forward Together • ReliabilityFirst

Save the Date – Insider Threats Workshop

- > September 30, 2020 8:00 a.m. 12:00 p.m.
- Insider Threat risk management, trends, program management, best practices, lessons learned, and resources

Intended Audience

- Physical Security Managers
- Cyber-Security Managers
- Vendor / Supply Chain Managers
- Human Resources (HR) Managers and Administrators
- Privacy Attorneys

Guest Presentations from

- CERT National Insider Threat Center
- FERC & NERC
- PJM & MISO

Virtual Breakout Sessions

Stakeholder Facility Ratings Success and Lessons

11:00 am - 12:00 pm

LARGE TRANSMISSION OWNERS

- **RF Facilitators:** Jeff Mitchell, Director, Special Projects, and Brian Hallett, Principal Reliability Consultant
- Presenters: Kamran Ali, Managing Director, and Hassan Hayat, Regional Transmission Planning Manager, AEP

Dave Quier, Director of Asset Management, and Shadab Ali, Manager of Transmission, PPL

WebEx Link: Click Here

Meeting Number (Access Code): 160 453 4483 Password: 0123456789 Join by phone: 1-650-479-3207

SLIDO: #RFWorkshop-LargeTO

SMALL - MEDIUM TRANSMISSION OWNERS

RF Facilitators: Jim Kubrak, Manager, Ops/Planning, and Kristen Senk, Sr. Managing Counsel, Legal & Enforcement

Presenters: Ryan Abshier, Manager of the Indiana Planning & Protection CenterPoint. Group, CenterPoint

Joe Pilch, Transmission Planning Engineer, Duquesne Light Company

WebEx Link: Click Here

Meeting Number (Access Code): 160 271 3388 Password: 0123456789 Join by phone: 1-650-479-3207

SLIDO: #RFWorkshop-MediumTO

GENERATOR OWNERS

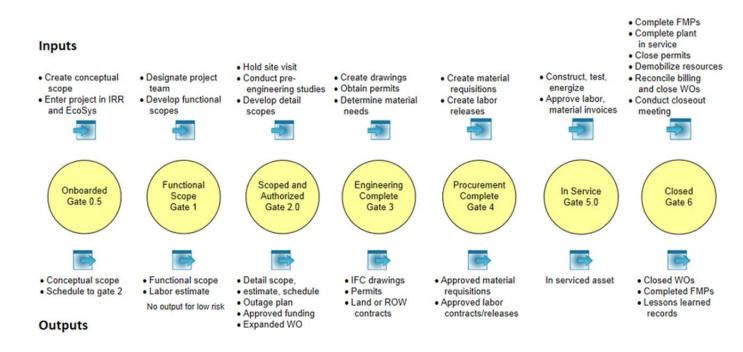
Page 4	Tuesday, Augus	st 25, 2020	2020 Fall Virtual Workshop	E
			SLIDO: #RFWorkshop-GO	
Presenter:	Nick Poluch, Senior Manager, NERC & Cyber Protection, Talen Energy	TALEN.	Password: 0123456789 Join by phone: 1-650-479-3207	
RF Facilitators:	Brian Thiry, Manager Entity Engagement, and Denise Hunter Principal Technical Auditor	er,	WebEx Link: <u>Click Here</u> Meeting Number (Access Code): 160 871 0659	

Forward Together • ReliabilityFirst

BOUNDLESS ENERGY"

RF Facility Ratings Aug 25 Workshop

Kamran Ali Managing Director, Transmission Planning Hassan Hayat Regional Manager, Transmission Planning


1

American Electric Power Transmission Grid Development

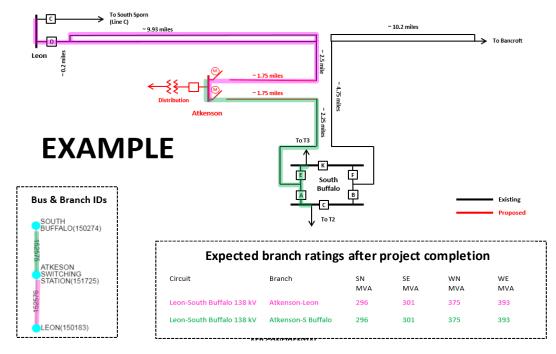
BOUNDLESS ENERGY"

AEP's Project Lifecycle Management Process (PLMP)

BOUNDLESS ENERGY"

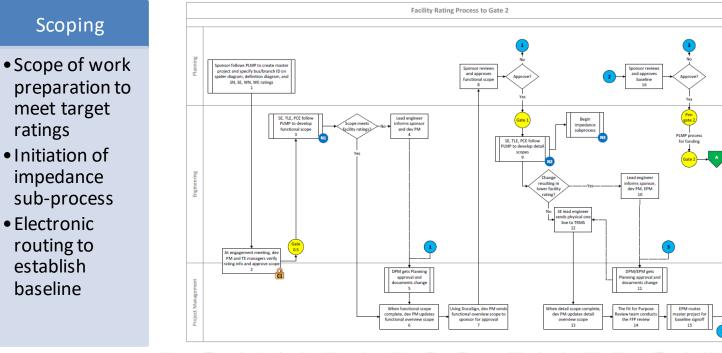
Facility Ratings Process Integration with AEP's PLMP

On-boarding Engineering Construction Energization Scoping • Scope of work Provide target Construction Attestations • As-built preparation to returned (astopology ratings packages issued (IFC) meet target designed to modeling • Define facility finalized ratings as-built series element Attestations comparison) • Real-time Ops Initiation of make-up drawings • Off-Design impedance issued models • Establish bus Process (if assub-process updated & branch Impedance designed does identifiers • Electronic calculations not match asfinalized routing to built) establish • IFC topology baseline modeling finalized


BOUNDLESS ENERGY

Facility Ratings Process Integration with AEP's PLMP

On-boarding


- Provide target ratings
- Define facility series element make-up
- Establish bus & branch identifiers

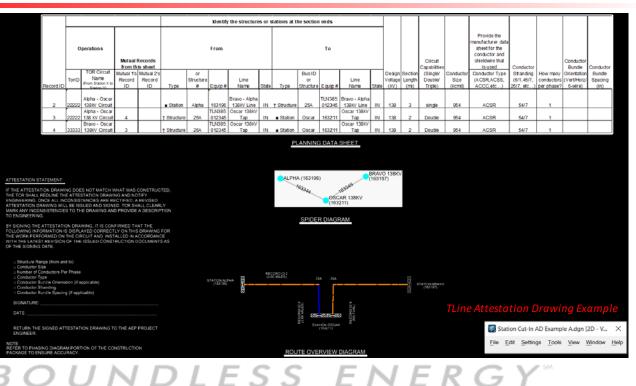
BOUNDLESS ENERGY"

Facility Ratings Process Integration with AEP's PLMP

BOUNDLESS ENE

meet target ratings Initiation of impedance

Scoping


- sub-process • Electronic
- routing to establish baseline

Facility Ratings Process Integration with AEP's PLMP

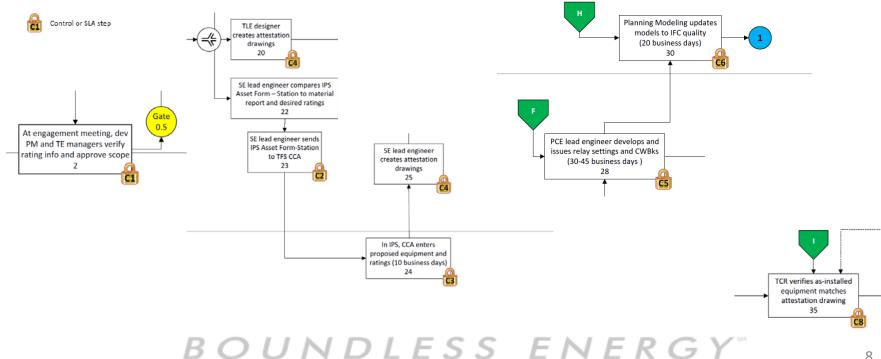
Engineering

- Construction packages issued (IFC)
- Attestations drawings issued
- Impedance calculations finalized
- IFC topology modeling finalized

6

Facility Ratings Process Integration with AEP's PLMP

Energization


- As-built topology modeling finalized
- Real-time Ops models updated

Line: A	bingdon - South Abingdon 138 kV				LinelD: 3	262671										From	RY ROAD 69 - RALSTON 6 m Bus: QUARRY ROAD to Bus: RALSTON	69	BranchD: 1609 From Bus Nam: 2455 To Bus Nam: 2455	86 From Buskey	r: 161712	Fro		4/2011 ARRY R 69.00 LSTON 69.00
						D.	us Key	Bus Num ber		PSSE Abbr		Bus Nam						Label	Limiting Borront	Branch MLSE Circuit MLSE		Summer Emergency MVA	Winter Normal MVA	Winter Emergency MVA
Branch If	ID 152542 ABNCOON SOURIAS	JINGDON 138	Circuit	1.1	From P	Bus: 1900	103	242533	05355	esp 13	0.00 /	BINGDON				1		From - SE	01x Switch (000A)		62	90	808	113
Branch	h Ratings (SN/SE/WE/WN):	167/245/210/2	71 K/:	138	To F	Bus: 1007	155	246779	055.5	EMODERCLO	0.00 \$	OUTHABIN	SOON BUSA	(2.138				Line - 1	1-Bundle ACSR = 556.5 = 16/1 = OSP	REY	838	636	1057	1057
Comme												att Revised	1242020			1		To - 5E To - 5E	01x Breaker (1200A) OII 01x Sub cond 796 AAC 37 Str.		151	151	196	196
Uper to a	ant														126513	1		10 - SE T0 - SE	01X Sub cold 786 AAC 37 Str. 02X Swtch (600A)		100	90	106	151
					Pos	sitive Seque	ance z 25		-	Zero Sequ	ence Z 25	<u> </u>	-	Mutur	al 1				Overall Branch Rating		82	90	105	113
SectionID	Section Name		Section Li Number	**	R	x	8	81/82	R	x	8	81/82	ID.	R	x									
153511	ABNODON TO 62 86	APC	1	0.01	0.00001	0.00004	0.00001	1 0.000005	0.0000	0.00011	0.0000	0 0.000	000 150001	1 0.00002	0.00005	QUARR	RY ROAD 69 - SOUTH LAT	NCASTER 69	BranchD 1609	22 Orcuit	1	Las	st Revised: 11/6	2019
153821	62-86 10 62 67	APC	2	0.33	0 000 10	0.00135	0 00003	5 0.000175	0.0010	0.00351	0 0000	0 0 000	000 151500	0.00001	0.001/9	From	m Bus: QUARRY ROAD		From Bus Num: 2455	86 From Buskey	r. 161712	Fre	m Bus: 05gor	ARRY R 69.00
153512	62-87 TO UNDEFORIOUND	APC	3	0.95	0.00046	0.00364	0.0010	0.000535	0.0000	5 0.01073	0.0000	0.000	000 152543	0.00260	0.00012	То	0 Bus: SOUTH LANCASTE	ER 2	To Bus Num: 2455	95 To Buskey	/: 161790		To Bus: 055.3	LANCAST269.00
153513	UNDERGROUND	APC		0.85	0.00073	0.01865	0.06332	2 0.001560	0.0070	2 0.00793	0.0000	0.900	000 152543	0.01454	0.05588					Dec. 10.00				
153820	UNDERGROUND TO 1192-28	APC	\$	1.98	0.00096	0.00757	0.00223	3 0.001115	0.0051	8 0.01940	0.0000	0.000	000 152541	3 0.00416	0.00989	1				Branch MLSE Crout MLSE	Normal	Summer Emergency		Writer Emergency
153819	1192-28 TO SOUTH A BINGOON	APC	6	0.02	0.00001	0.00006	0.00003	0.000010	0.0000	5 0.00018	0.0000	0 0.000	000 152543	3 0.00004	0.00010			Label	Limting Dement		MVA.	MVA	MVA	MVA
	Branch Tetals:			4.14	0.00267	0.02427	0.00700	0.003600	0.0162	0.04186	0.0000	0.000	000					Line - 1	1-Bundle ACSR - 556.5 - 18/1 - 06P	REY	838	636	1057	1057
	Line Totais:		33	4.14	0.00257	0.02427	0.0070	0 0.003500	0.0162	0.04185	0.0000	0 0.000	000			1		To - SE To - SE	01x Breaker (3000A) IV on OII 01x Sub cond 1590 AAC 61 Str.		373	373	462	462 233
																1		TO - SE	04x Sub cond 2000 AAC 91 Str.		191	224	242	267
Circuit		Branch ID	Branch Name			Sectio	on Name				Length (mi)	Mutual ID		Mutual 1 1				10 - SE	09x Switch (1200A) Overall Branch Rating		164 164	180	213 211	226
Abrigdos -	Clinch River 138 kV	15000	1 05ABINDO 138.0 138.00 CM 1	30 · 06CL	NDR	ABRICO	XON 138	CLNOHR//ER	138	1	0	0	00000	00000	a				Overall Circuit Rating		#2	90	106	113
	- Walt Field Call KY		0 DNIFICALIF 1381 138:00 OM 1					DINEYWES 13		1	0	0	00000		0									
Eroadford -	- Wolf Hills 13E kV	15150	138.00 CM 1	80 - 05K	erwss.	essec	ADF 138 -	OSKEYWSS 13	38	5	0	0	00000	00000	0	00000	00000 00.00 - 00.00	00.00 - 00.	09					
South Abing	gdon - Wolf Hills 138 KV	15254	3 055 ABNODU1138 138.00 CM 1	8.00 - 055	SPRN3	SOUTH	ABBISDO	85-561: OT W		1	0.02	152542	00004	.00010	0	00000	00000 00.00 - 00.27	9973 - 100	0.00					
	gdon - Wolf Hills 138 KV		3 055 ABN3DN1138 138.00 Okt 1					EROROUND		2		152542	.00416		0	00000			51 p. 4					
100	gcon - Wolf Hills 1.38 KV		0 055 ABP/G011138 138 00 021 1				GROUND			3	0.85	152542	01454		0	00000			53					
	gdan - Wolf Hels 130 KV		138:00 CM 1				GROUNDT			4	0.95	152542	00280		0	00000			2.54					
South Abres	gdon - Wolf Hills 138 KV gdon - Wolf Hills 138 KV		138.00 Qt 1				TD 257-103			5	3.21	151500	00593		0	00000								
			13 055 ABINGDN1138				AT TO SP	RING OREEK		6	0.37	151500	.00084	.00173	0	00000	.00000 54.99 - 100.00	0 00.00 05	01					

BOUNDLESS ENERGY"

Facility Ratings Process Controls (Examples)

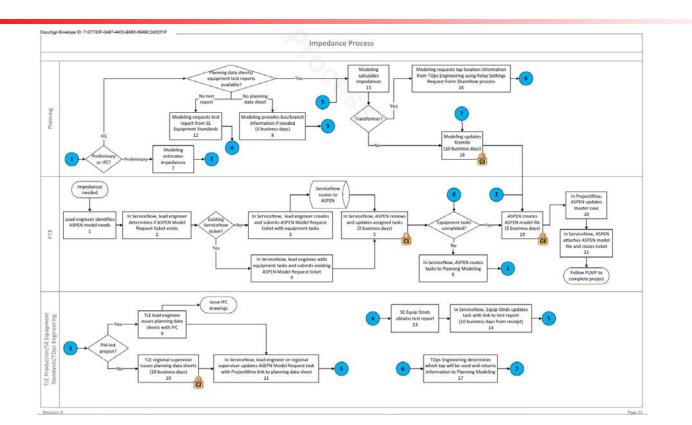
Automation & Systems Integration

, acility Ra	U						Kremlin Workbench - Branch Dat								
quipmer	-	tabase vs Static ase	on B	ranchiD 123074 ranch DUMONT 345 - 1 ranchNum 1 KT Name Dumont - Sorenson the state DUMONT tation2	Circuit ID n 345 kv	0 Bus1KV Bus2KV From B To Bus v one 1 3 one 2 3	345 OpCo2 IMPC V Bust	V Status 1 -	New Brand Side = To Bus In Serv D 104	No No		story 0 REV	~		ark el_Req
IPS Se	ervey 123	Kremlin	Matches K					critics condu		in Ellennen	LIST OF	round ro		ionnonta	
	and it has a second second second second	tus Is asset ID In Kremlin N		Action			Comments •	BusKey -	BusAbbr •	KV -	SN -	SE -	WN -	WE -	SN M
In Service D	Demo	no	no	nothing				The second se							
not in service D	Demo	no	no	nothing			Trap: Line Trap: SORENSON TRA		05DUMONT	345	3054		3384	3744	
Pending In	nvested	no	no	Import			Trap: Line Trap: SORENSON TRA	120075	05DUMONT	345	3054	3450	3384	3744	
Pending D	Demo	no	no	investigate			Disconnector: Switch: CB "E1" B	120075	05DUMONT	345	3440	3774	4466	4741	
	/erified	no	no	investigate			Disconnector: Switch: CB "E1" T	120075	05DUMONT	345	3440	3774	4466	4741	
In Service V	/erified	no	no	Import			Disconnector: Switch: CB "F1" B		05DUMONT	345	3440		4466	4741	
	Demo	Yes	Yes	Remove from Kremlin			Disconnector: Switch: CB "F1" ST	1 120075	05DUMONT	345	3440	3774	4466	4741	
not in service D		Yes	Yes	Remove from Kremlin	n		Circuit breaker: : STILLWELL F1	120075	05DUMONT	345	3126	3126	3874	3874	
	nvested Demo	Yes Yes	Yes	nothing investigate			Circuit breaker: : TRANSFORMER	120075	05DUMONT	345	3126	3126	3874	3874	
	/erified	Yes	Yes	investigate		80	Conductor: Aluminum Tubing -		05DUMONT	345	5764		7361	8228	
Contract in the second second second	/enfied	Yes	Yes	nothing			consector Anuminan Tubing -	1200/3	0000mon1	545	0704	0714	1001	0220	
in particle in				in a second b											
In Service D	Demo	Yes	No	remove	*first investigate										
not in service D	Demo	Yes	No	remove	*first investigate										
Pending In	nvested	Yes	No	Re-Import	*first investigate		Import Example Routir	าย							
Pending D	Demo	Yes	No	Error	*first investigate										
Pending V	/erified	Yes	No	Error	*first investigate										
In Service V	/erified	Yes	No	Re-Import	*first investigate		SS EN	· ·	\sim	- N	1 500				

AMERICAN ELECTRIC POWER

P6 Milestones & Schedule

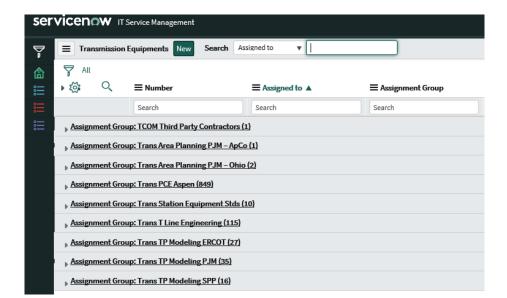
BOUNDLESS ENERGY


008 ID	Activity Name	Activity Type	AC Responsibility	Original	Ctart	Finish	-008 Layout Predecessor Details	Support Date	1~	020		_	_		_		-	_			2021	_	orour	⊦ 20
U	Activity Name	Activity type	AC_Hesponsibility	Duration	otart	rinsn	Predecessor Details	Successor Details	2	Ju		lug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Mav	Jun	Jul	-
~ ~				2024	01-Jun-20	27-Jul-21				00		uy	oep	001	TNUT	Dec	Jan	Teu	ma	Λμ	may	Juli	Jui	-
C-0						27-00-21										1		1	1	1	1	1		
	Gate 2 (Funding Approved)	Start Milestone		Od	01-Jun-20			1.1: FS, 2.1: FS, 3.1: FS, 4.1: FS, 4.5: FS, 4.4: FS	ate	92 (Fu	inding	Appro	wed)											
relim	inary Model Request for Ground Grid Anal	ysis		43d	01-Jun-20	30-Jul-20																		
1	SE Production Creates Request at Gate 2	Task Dependent	ST ENG	5d	01-Jun-20	05-Jun-20	G2: FS	1.2: FS	SE	Produ	ction (Create	s Den	est at (Gate 2	1	1	1	1	1	1	1	1	
2	PCE Modeling Team Review Request	Task Dependent			08-Jun-20	10-Jun-20	1.1:FS	1.3: FS						w Requ		1	1	1	1	1	1	1	1	
3	Transmission Planning Create Project Change File	Task Dependent			11-Jun-20	24-Jun-20	1.2:FS	1.4: FS								Change	File	+	÷	t	+	1	+	
4	PCE Modeling Team Update Model	Task Dependent	ASPEN	5d	25-Jun-20	01-Jul-20	1.3: FS	1.5: FS						Jodate				1	1					
5	SE Production Perform Ground Grid Analysis and Update Below Grade Prints	Task Dependent	ST ENG	20d	02-Jul-20	30-Jul-20	1.4: FS	1.6: FS			s	E Proc	duction	Perfor	n Grou	nd Grid	Analysis	and Up	pdate Be	ow Gra	ade Prin	ts		
.6	IFC - Below Grade Package	Finish Milestone	ST ENG	Od		30-Jul-20	1.5: FS		1		- 🔶 II	FC - B	elow G	rade Pa	sckage	1		1			1	1		
	inary Model Request for Station Settings				01-Jun-20	27-Aug-20					1												1	
1	PCE Production Creates Request at Gate 2 (Operations,	Task Dependent	DeC	Ed	01-Jun-20	05-Jun-20	G2: FS	2.2: FS	hei	Droot		Oren	ton Da		Cata	lomr	Fore D		in and	Orolim S	and Ck	cuit (SC	Mode	
	Distribution and Prelim Short Circuit (SC) Model]	rask odpendent	Fau	50	01-00/1-20	00-001-20	G2. F0	2.2.10	1	100	100,001	TURES	aco Hit	questa	Galle	alohais	auns, D	iou iDU0	un alla	areadin o	on on	un (00)	model	1
2	PCE Modeling Team Review Request	Task Dependent	ASPEN	3d	08-Jun-20	10-Jun-20	2.1: FS	2.3: FS						w Requ		1			1	1	1	1	1	
3	Transmission Planning Create Project Change File	Task Dependent			11-Jun-20	24-Jun-20	2.2: FS	2.4: FS								Change	File	1	1	1	1	1	1	
4	PCE Modeling Team Update Model	Task Dependent			25-Jun-20	01-Jul-20	2.3: FS	2.5: FS		PC	E Mo			Jpdate			1	1	1	1		1	1	
.5	PCE Production Develop Station Settings	Task Dependent			02-Jul-20	27-Aug-20	2.4: FS	2.6: FS	1			<u> </u>	PCE P	roductio	in Deve	op Stat	ion Setti	ngs	<u>i</u>	<u>i</u>	<u>i</u>	<u> </u>	į	
	IFC - Station Settings	Finish Milestone		Od		27-Aug-20	2.5: FS					•	IFC - S	tation S	ettings								1	
ne S	ettings Existing Equipment for Project with	h NO T-Line W	/ork Timeline	103d	01-Jun-20	23-Oct-20																	1	
.1	PCE Production Creates Request at Gate 2 [Final Short Circuit (SC) Model]	Task Dependent	PaC	5d	01-Jun-20	05-Jun-20	G2: FS	3.2: FS	PCI	E Prod	luction	n Crea	tes Re	quest a	Gate	z (Final S	short Cir	cuit (SC	C) Mode	1				
2	PCE Modeling Team Review Request	Task Dependent	ASPEN	3d	08-Jun-20	10-Jun-20	3.1: FS	3.3: FS	PC	CE Mo	deling	Team	Revie	w Requ	est	1		1	1					
.3	Transmission Planning Gather Information	Task Dependent	Sponsor	5d	11-Jun-20	17-Jun-20	3.2: FS	3.7: FS, 3.6: FS, 3.4: FS, 3.5: FS	þ 1	Transi	missio	n Plan	ning G	atherlr	formati	an								
.4	Transmission Line Engineer Generate Planning Data Sheet (PDS) as Part of Project	Task Dependent	T ENG	20d	18-Jun-20	16-Jul-20	3.3: FS	3.6: FS	Ē	<u> </u>	Tran	s mis si	ion Lin	Engin	er Ger	erate P	lanning (Data Sh	ndet (PD	S) as P	art of Pr	dject		1
.5	Station Standards Process Equipment Test Report	Task Dependent	ENGR	10d	18-Jun-20	01-Jul-20	3.3: FS	3.6: FS		🖬 Sta	ation S	tandar	rds Pré	cess E	ilauipme	nt Test I	eport	1	1	1	1	1	1	
.6	Transmission Flanning Calculate Impedances and Update System of Record	Task Dependent	Sponsor	10d	17-Jul-20	30-Jul-20	3.3: FS, 3.4: FS, 3.5: FS	3.7: FS		•	T	irans m	noission	Plannin	g Calcu	liste Imp	edances	and U	Jødate S	ystem o	Recon	đ		
7	PCE Modeling Team Update Model	Task Dependent	ASPEN	5d	31-Jul-20	06-Aug-20	3.3: FS, 3.6: FS	3.8: FS			Ь	PCEI	Modeli	na Tearr	Updat	Model		1						
.8	PCE Production Develop Line Settings	Task Dependent			07-Aug-20	09-Oct-20	3.7: FS	3.9: FS			- Fe					uction De		ine Set	tings				1	
9	IFC - Line Settings	Finish Milestone	PaC	Od		09-Oct-20	3.8: FS	3.10: FS	t	1		Ť				Settings		1	T	1	1	1	1	-
.10	[25 Business Days] Transmission Planning Send Updated Equipment Ratings to Transmission Operations Group	Task Dependent	Sponsor	5d	12-Oct-20	16-Oct-20	3.9: FS	3.11: FS						[2	5 Busi	iess Da	s] Tran	smissio	n Plann	ing Sen	d Updati	ed Equip	ment F	R
.11	[20 Business Days]	Task Dependent		5d	19-Oct-20	23-Oct-20	3.10:FS	3.12: FS	1	1					20 But	sness D	ays]			1	1	1	1	
12	ENERGIZATION	Finish Milestone		Od		23-Oct-20	3.11:FS		1	1				٠	ENERO	ZATIO	N	1	1	1			1	
ne S	ettings IFC / New Equipment for Project W	ith T-Line Wo	rk Timeline	292d	01-Jun-20	27-Jul-21			1	1						1			1	1			1	
1	PCE Production Creates Request at Gate 2 [Final Short Circuit (SC) Model]	Task Dependent	PaC	5d	01-Jun-20	05-Jun-20	G2: FS	4.2: FS	PCI	8 Prod	luction	n Creel	tes Re	quest a	Gate	2 [Final ?	Short Cir	cuit (Sf	C) Mode	1	1	1	 	-
.5	Transmission Line Engineer Design T-Line Package and Generate Planning Data Sheet (PDS) as Part of Project	Task Dependent	T ENG	220d	01-Jun-20	14-Apr-21	G2: FS	4.6: FS	F	+	+	+			:	 	:	 	+	۲ 📫	inans mis	sion Lin	e Engir	ne
2	PCE Modeling Team Review Request	Task Dependent	ASPEN	3d	08-Jun-20	10-Jun-20	4.1: FS	4.3: FS	PC		delina	Team	Revie	w Requ	est				1				1	
3	Transmission Planning Gather Information	Task Dependent			11-Jun-20	17-Jun-20	4.2: FS	4.7: FS							format	dn			1				1	
.4	Equipment Test Report Available (Assume 345kV Transformer LT – 13 Months & Report Avail. 2 Months Prior	Finish Milestone		Od		01-Apr-21*	G2: FS	4.7: FS	ſ	-	T					Ĩ				🔶 Equi	pment T	est Rep	ortAvai	aila
7	Station Standards Process Equipment Test Report	Task Dependent	ENGR	10d	05-Apr-21	16-Apr-21	4.3: FS, 4.4: FS	4.8: FS	t	+		+-			}	1	†	t	†		Station S	tandard	s Proor	
6	IFC - T-Line Package / Submit Planning Data Sheet (PDS)	Finish Milestone		Od		14-Apr-21	4.5: FS	4.8: FS	1	1						1			1			ine Pack		
	M M Horas (Foreig								-			- '			•	·		·	·					-

10

Impedance Process

BOUNDLESS ENERGY



Impedance Process

BOUNDLESS ENERGY™

 ServiceNow tool is deployed to manage workflow between PCE, TP, TLE, and SEStds

C zelály	LE Logen Edwards	
	Assigned to	Logan Edwards
	State	Work in progress was New
	(3) system	
	8	final ant
	Subject	A Circuit Task IMI/2000279 has been assigned to your group
	From	ServiceNew
	Ter	anotok@aep.com, landwards@aep.com, wetano@aep.com, liteikehamanot@aep.com, rdameBer@aep.com, jishoup@aep.com, liteiyat@aep.com, bihosDrook@aep.com, rinaugle@aep.com, meberta@aep.com
		Show email details
	AM, Abigal Miller	
	Assigned to	[Empty] was Abigal Miller
	Assignment Group	Trans TP Modeling P3M was Trans PCE Aspen
	State	New war Work in progress
	Mt Abigal Miller	
	Redeye station is now in ser	vice. Hend to update kremin to reflect this. Need knemin report with as built data.
	AN Alegal Itilar	
	Assigned to	Abipal Hiter
		Trans PCE Aspen
		Work in progress

BOUNDLESS ENERGY

Human Performance

- Relying more on automated data exchange and import
- Integrating systems to minimize human actions
- Survery 123 App and DS Track Mechanism to initiate, complete, and submit as-built attestations
- Checker Tool

Identifies misalignment between planning and engineering data

• Integrated Datasheets

Correlating project accounting and scheduling information with equipment status (designed, energized etc)

• Workbench Modules

Differentiating between conceptual, as-designed, and as-built information

BOUNDLESS ENERGY"

Periodic Reviews

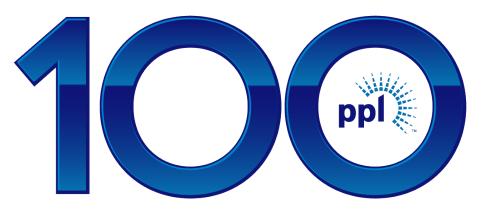
• Preventative Actions

On a monthly basis all projects with upcoming in-service dates are analyzed

Detective Actions

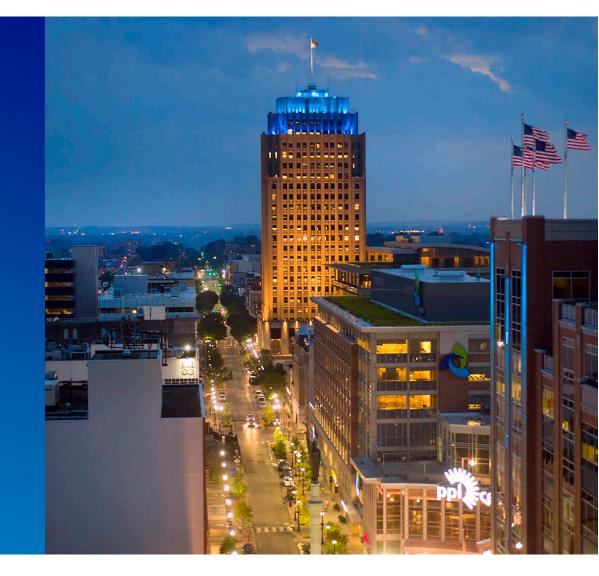
On a quarterly basis, 10% of the projects that were placed in-service in the previous quarter are audited

• Peer Reviews


Incoming data and outgoing calculations are reviewed prior to release

• Training and Communications

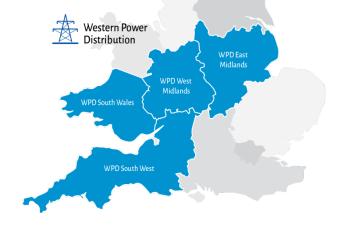
New trainings and communication plans are being developed to train the company on new tools, processes, and expectations


BOUNDLESS ENERGY"

A century of people **powering life.**

About PPL Electric Utilities

A closer look at PPL


PPL Electric Utilities:

- Electricity distribution and transmission
- 1.4 million customers
- 50,000 miles of power lines in 29 counties
- 27 J.D. Power awards
- Top-decile for reliability
- Robust smart grid

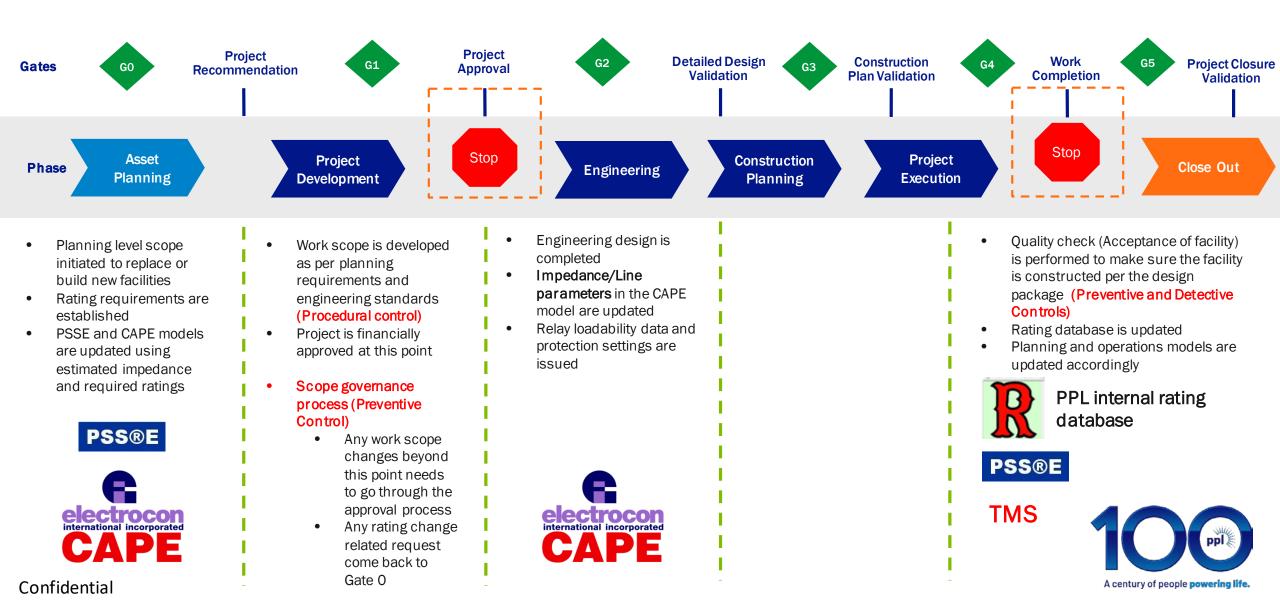
Louisville Gas and Electric and Kentucky Utilities:

- Headquartered in Louisville
- 1.3 million customers across Kentucky and Virginia
- 8,000 MW of regulated power generation capacity (coal, natural gas, hydro and solar)
- 24 J.D. Power awards

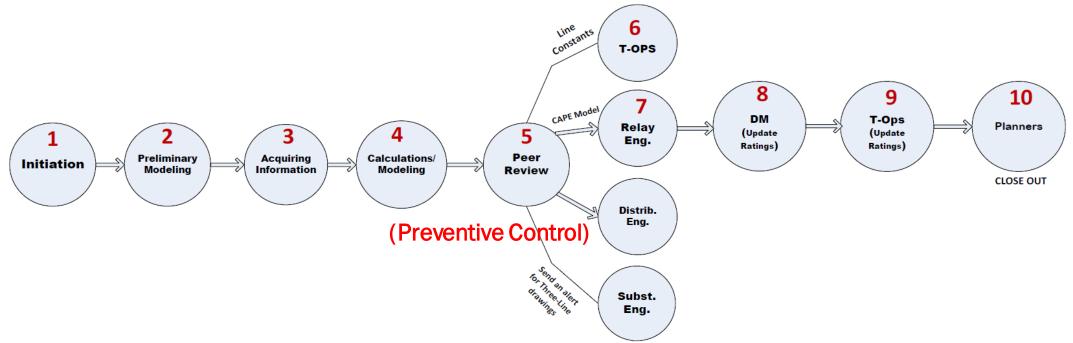
Western Power Distribution:

- Headquartered in Bristol, United Kingdom
- Electricity delivery only
- 7.8 million customers
- Consistently the Top 4 performers for customer satisfaction in the U.K.
- "Leading the way" in connecting solar to the grid

Facilities Ratings FAC-008 Program

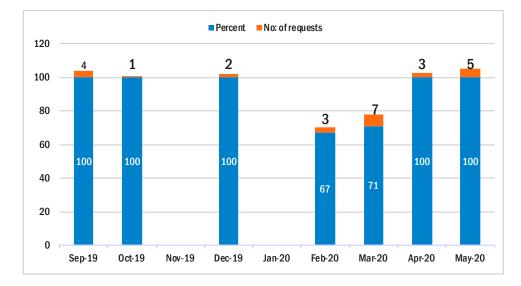

FAC-008 Program

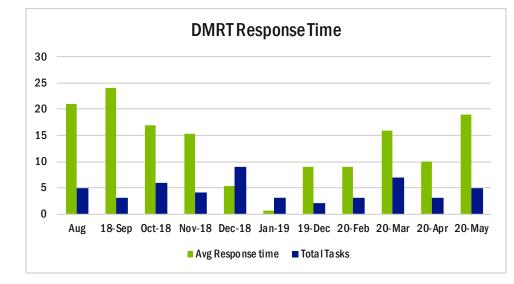
PPL's FAC-008 program is built upon 3Cs



Work scope and quality control through gated process

Modelling workflow control and communication

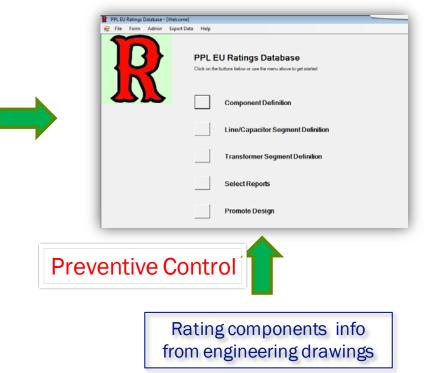



- Modelling workflow process is documented and integrated through SharePoint.
- A ticket is created on SharePoint for each modelling related activity. The SharePoint is periodically synched with the project schedule.
- New Rating and Impedance information is communicated to Planning, Protection and Operations through SharePoint.
- Performance is tracked through Performance Indicator (PI).

Performance Indicators

	Dat	a Management request Deliverables	Dashboard			
Department	Monthly Performance	Division of number of requests completed	Target	Current	Monthly % of Request past ERD	Notes
Transmission Planning	Delayed • Delayed • Number of requests completed	 Number of requests completed between (0·30) days prior to ERD Number of requests completed between (31-60) days prior to ERD 	100.0%	100.0%	100.0%	The monthly measure of number of requests completed and forwarded for relay settings job without missing any deadlines

Rating process documentation and controls

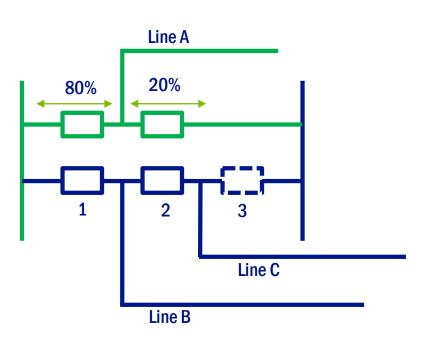

- 1) Documented process for rating methodology
- 2) Ratings of all facilities are maintained under access-controlled rating database
- 3) Rating database has master rating library of all components based on the documented rating methodology

EU-NERC-OPS stom ID: EU-NERC-OPS-011 ppl PPL Electric Utilities Effective Date: 12-31-2019 Facility Ratings Methodology Procedure TABLE OF CONTENTS 1 PURPOSE / SCOPE 2 RESPONSIBILITY 3 APPLICABILITY. 4 TERMS AND DEFINITIONS RATINGS METHODOLOGY AND ASSUMPTION CURRENT SPLIT CRITERIA (80/20 RULE) TEMPORARY RE-RATES (EXISTING EQUIPMENT WITH REVISED CRITERIA 8 PROCESS FLOW. 9 ADD, REMOVE, AND/OR CHANGE STANDARDS/ASSUMPTIONS/METHODOL 10 REFERENCES 11 REGULATORY REQUIREMEN 12 TRAINING 13 COMPLIANCE AND EXCEPTION 14 ATTACHMENT 15 RECORD RETENTION 16 PROCESS CONTROLS 17 REVISION HISTORY ATTACHMENT 1 - LOADCAP_DATA_INPUT_2012.XLS - RATINGS SPREADSHEET WITH IEEE C57.91 CALCULATIONS ATTACHMENT 2 - PPL EU RATINGS DATABASE EXAMPLE

Procedure

Procedural Control

Rating Database

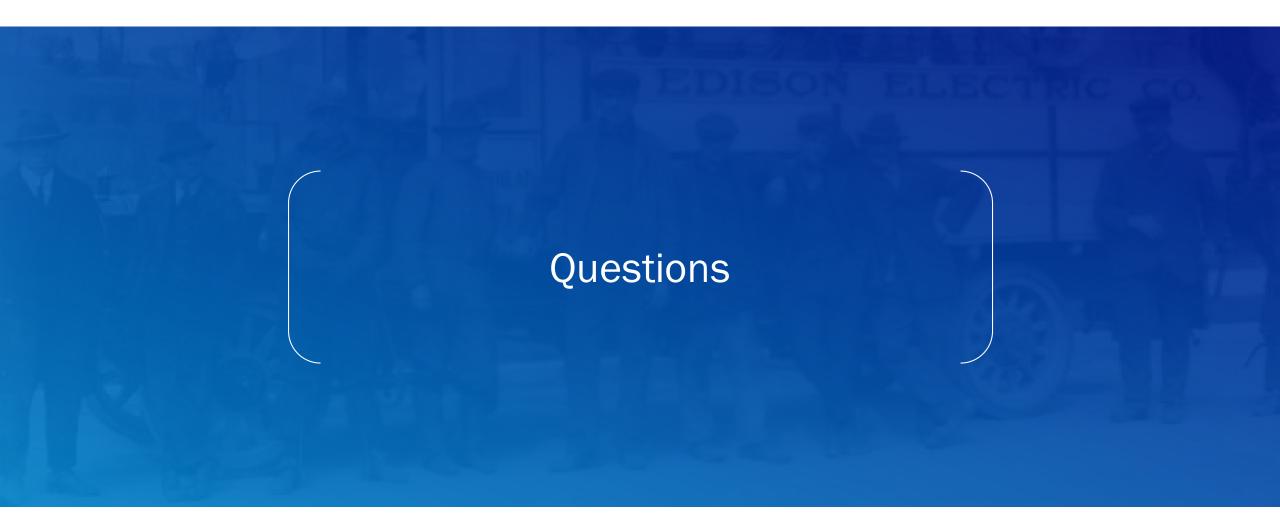


A century of people powering life.

Ratings philosophy

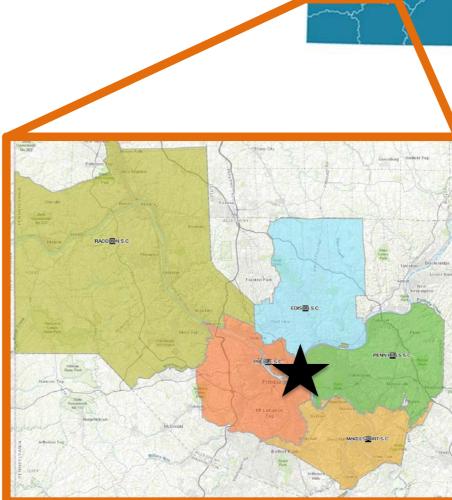
- PPL considers all components that come in the power flow path to determine facilities' rating
 - Includes bus, bay conductors and down comers inside the substation
- All facilities' ratings are based on 100% power flow except for 500 kV lines. For those facilities, PPL applies 80/20 rule for rating calculations

Future work


Integrate field information with the substation 3D modelling initiative

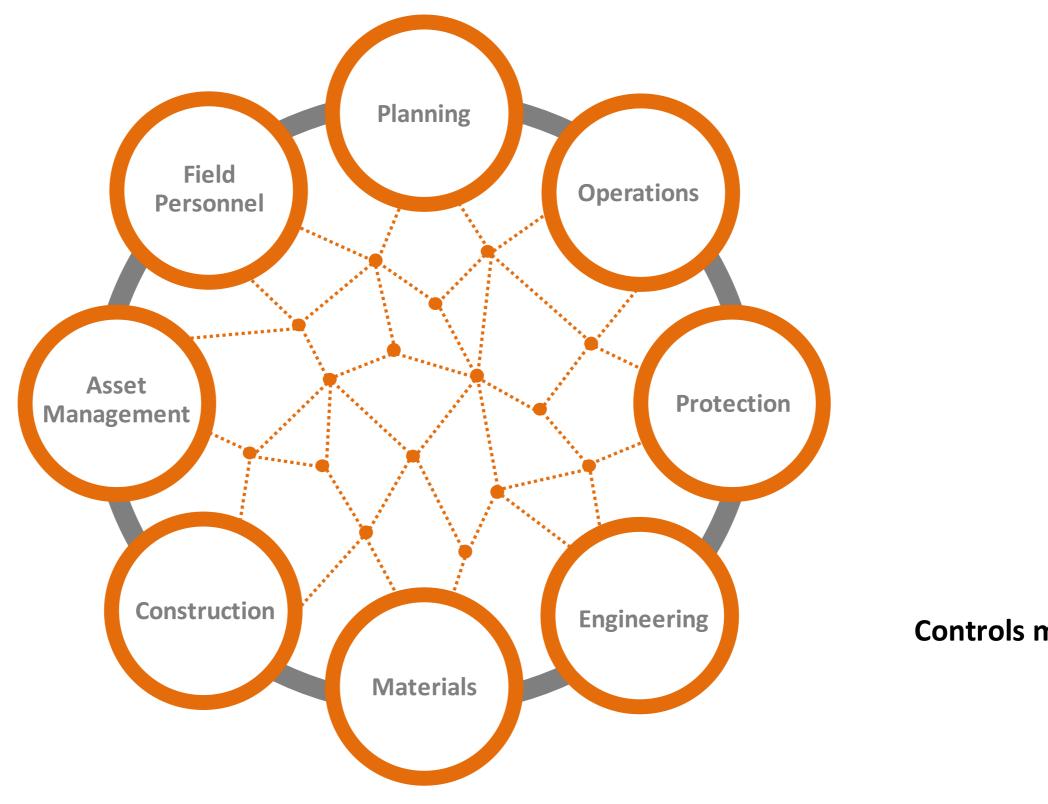
Integrate node breaker model in PSSE

Develop digital architecture that provides seamless connectivity between planning database, engineering documents and field information


Duquesne Light Company Facility Rating Internal Controls

Joe Pilch, Manager Transmission Planning & Interconnection

DLC Company Profile


- Registered TO and DP, service territory is located in southwest Pennsylvania, surrounding the City of Pittsburgh.
 - ~ 650 miles of BES Facilities
 - ~ 120 BES Facilities
 - ~ 35 BES Substations
 - Both Rural and Urban Environments
- Transmission Voltages:
 - 345 kV
 - 138 kV
 - 69 kV

Challenges of FAC-008 Compliance

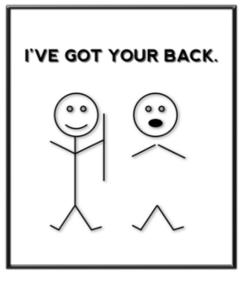
Controls make it easier!

FAC-008 Program Background

- Transmission Planning group is the FAC-008 standard owner
- Maintains all Facility Ratings in the DLC Transmission System Equipment Ratings Database
 - Built using .sql database structure
 - Equipment ratings are maintained via web interface
 - Can be exported to MS Excel
- Ratings Database is populated from engineering drawings
 - Equipment single lines
 - Protection single lines
 - Circuit maps

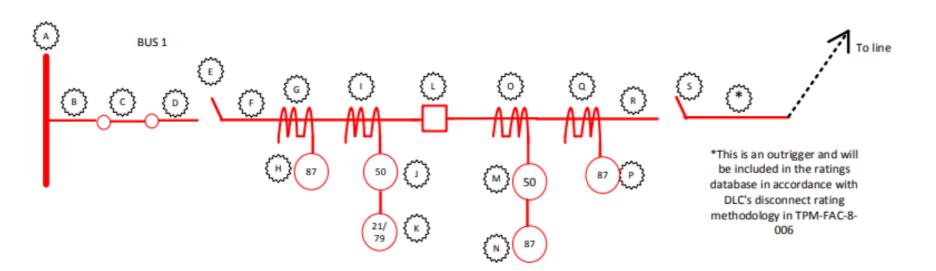
(138, 4) Type: Primary Power Take	-Off: 0									
		Sum	mer 35C ((95F)	Spring	/Fall 200	(68F)	Win	ter 10C (50F)
Гуре	Class	Norm	Emrg	LD	Norm	Emrg	LD	Norm	Emrg	LD
SS Wire (3.5in AL PIPE)	2A	2481	3121	3452	2845	3407	3707	3058	3581	3864
SS Wire (Two (2) - 3.5in AL PIPE)	2A	4143	5212	5765	4751	5690	6191	5107	5980	6453
SS Wire (3.5in AL PIPE)	2A	2481	3121	3452	2845	3407	3707	3058	3581	3864
Disconnect (2000A)	1	2000	2000	2060	2000	2000	2060	2000	2000	2060
SS Wire (853.7 ACAR 24/13)	2A	1074	1267	1334	1193	1362	1423	1264	1421	1478
CT (2000/5MR)	1	2328	2328	2400	2328	2328	2400	2328	2328	2400
Relay CT (50)	1	4656	4656	4800	4656	4656	4800	4656	4656	4800
Relay CT (21/79)	1	3492	3492	3600	3492	3492	3600	3492	3492	3600
Circuit Breaker (3000A)	1	3000	3000	3090	3000	3000	3090	3000	3000	3090
Relay CT (50)	1	4656	4656	4800	4656	4656	4800	4656	4656	4800
Relay CT (87)	1	3492	3492	3600	3492	3492	3600	3492	3492	3600
CT (2000/5MR)	1	2328	2328	2400	2328	2328	2400	2328	2328	2400
SS Wire (853.7 ACAR 24/13)	2A	1074	1267	1334	1193	1362	1423	1264	1421	1478
Disconnect (2000A)	1	2000	2000	2060	2000	2000	2060	2000	2000	2060
(138, NA) Type: Primary Power Tak	e-Off: 0									
		Sum	mer 35C ((95F)	Spring	/Fall 200	(68F)	Win	ter 10C (!	50F)
VDe	Class	Norm	Emrg	LD	Norm	Emrg	LD	Norm	Emrg	LD
OH Wire (795 ACSR 45/7)	2A	919	1039	1117	1082	1181	1273	1177	1265	1368
OH Wire (853.7 ACAR 24/13)	2A	932	1055	1129	1098	1199	1286	1193	1285	1380
OH Wire (795 ACSS/TW 20/7)	2A	929	1050	1153	1094	1193	1314	1189	1277	1411
OH Wire (853.7 ACAR 24/13)	2A	932	1055	1129	1098	1199	1286	1193	1285	1380
(138, 4) Type: Primary Power Tal	ke-Off: 0		л)	1			1			
_ (100/1/ 1/portiniar) 1000114		Sum	mer 35C ((95E)	Spring	/Fall 200	(68F)	Win	ter 10C (!	50F)
ype					- pring	,				,
	Class				Norm	Emra	LD	Norm	Emra	LD
SS Wire (853.7 ACAR 24/13)	Class 2A	Norm	Emrg	LD	Norm 1193	Emrg	LD 1423	Norm 1264	Emrg	LD
	2A	Norm 1074	Emrg 1267	LD 1334	1193	1362	1423	1264	1421	1478
Disconnect (2000A)	2A 1	Norm 1074 2000	Emrg 1267 2000	LD 1334 2060	1193 2000	1362 2000	1423 2060	1264 2000	1421 2000	1478 2060
Disconnect (2000A) SS Wire (853.7 ACAR 24/13)	2A 1 2A	Norm 1074 2000 1074	Emrg 1267 2000 1267	LD 1334 2060 1334	1193 2000 1193	1362 2000 1362	1423 2060 1423	1264 2000 1264	1421 2000 1421	1478 2060 1478
Disconnect (2000A) SS Wire (853.7 ACAR 24/13) CT (2000/5MR)	2A 1 2A 1	Norm 1074 2000 1074 2328	Emrg 1267 2000 1267 2328	LD 1334 2060 1334 2400	1193 2000 1193 2328	1362 2000 1362 2328	1423 2060 1423 2400	1264 2000 1264 2328	1421 2000 1421 2328	1478 2060 1478 2400
Disconnect (2000A) SS Wire (853.7 ACAR 24/13) CT (2000/5MR) Relay CT (50)	2A 1 2A 1 1	Norm 1074 2000 1074 2328 4656	Emrg 1267 2000 1267 2328 4656	LD 1334 2060 1334 2400 4800	1193 2000 1193 2328 4656	1362 2000 1362 2328 4656	1423 2060 1423 2400 4800	1264 2000 1264 2328 4656	1421 2000 1421 2328 4656	1478 2060 1478 2400 4800
Disconnect (2000A) SS Wire (853.7 ACAR 24/13) CT (2000/5MR) Relay CT (50) Relay CT (21/79)	2A 1 2A 1 1 1	Norm 1074 2000 1074 2328 4656 3492	Emrg 1267 2000 1267 2328 4656 3492	LD 1334 2060 1334 2400 4800 3600	1193 2000 1193 2328 4656 3492	1362 2000 1362 2328 4656 3492	1423 2060 1423 2400 4800 3600	1264 2000 1264 2328 4656 3492	1421 2000 1421 2328 4656 3492	1478 2060 1478 2400 4800 3600
Disconnect (2000A) SS Wire (853.7 ACAR 24/13) CT (2000/5MR) Relay CT (50) Relay CT (21/79) CT (2000/5MR)	2A 1 2A 1 1 1 1 1	Norm 1074 2000 1074 2328 4656 3492 3880	Emrg 1267 2000 1267 2328 4656 3492 3880	LD 1334 2060 1334 2400 4800 3600 4000	1193 2000 1193 2328 4656 3492 3880	1362 2000 1362 2328 4656 3492 3880	1423 2060 1423 2400 4800 3600 4000	1264 2000 1264 2328 4656 3492 3880	1421 2000 1421 2328 4656 3492 3880	1478 2060 1478 2400 4800 3600 4000
Disconnect (2000A) SS Wire (853.7 ACAR 24/13) CT (2000/5MR) Relay CT (50) Relay CT (21/79) CT (2000/5MR) Relay CT (87)	2A 1 2A 1 1 1 1 1 1	Norm 1074 2000 1074 2328 4656 3492 3880 5820	Emrg 1267 2000 1267 2328 4656 3492 3880 5820	LD 1334 2060 1334 2400 4800 3600 4000 6000	1193 2000 1193 2328 4656 3492 3880 5820	1362 2000 1362 2328 4656 3492 3880 5820	1423 2060 1423 2400 4800 3600 4000 6000	1264 2000 1264 2328 4656 3492 3880 5820	1421 2000 1421 2328 4656 3492 3880 5820	1478 2060 1478 2400 4800 3600 4000
Disconnect (2000A) SS Wire (853.7 ACAR 24/13) CT (2000/SMR) Relay CT (50) Relay CT (21/79) CT (2000/SMR) Relay CT (87) Circuit Breaker (3000A)	2A 1 2A 1 1 1 1 1 1 1 1	Norm 1074 2000 1074 2328 4656 3492 3880 5820 3000	Emrg 1267 2000 1267 2328 4656 3492 3880 5820 3000	LD 1334 2060 1334 2400 4800 3600 4000 6000 3090	1193 2000 1193 2328 4656 3492 3880 5820 3000	1362 2000 1362 2328 4656 3492 3880 5820 3000	1423 2060 1423 2400 4800 3600 4000 6000 3090	1264 2000 1264 2328 4656 3492 3880 5820 3000	1421 2000 1421 2328 4656 3492 3880 5820 3000	1478 2060 1478 2400 4800 3600 4000 6000 3090
Disconnect (2000A) SS Wire (853.7 ACAR 24/13) CT (2000/5MR) Relay CT (50) Relay CT (21/79) CT (2000/5MR) Relay CT (87) Circuit Breaker (3000A) Relay CT (50)	2A 1 2A 1 1 1 1 1 1 1 1 1 1	Norm 1074 2000 1074 2328 4656 3492 3880 5820 3000 4656	Emrg 1267 2000 1267 2328 4656 3492 3880 5820 3000 4656	LD 1334 2060 1334 2400 4800 3600 4000 6000 3090 4800	1193 2000 1193 2328 4656 3492 3880 5820 3000 4656	1362 2000 1362 2328 4656 3492 3880 5820 3000 4656	1423 2060 1423 2400 4800 3600 4000 6000 3090 4800	1264 2000 1264 2328 4656 3492 3880 5820 3000 4656	1421 2000 1421 2328 4656 3492 3880 5820 3000 4656	1478 2060 1478 2400 4800 3600 4000 6000 3090 4800
Disconnect (2000A) SS Wire (853.7 ACAR 24/13) CT (2000/5MR) Relay CT (50) Relay CT (21/79) CT (2000/5MR) Relay CT (87) Circuit Breaker (3000A) Relay CT (50) Relay CT (87)	2A 1 2A 1 1 1 1 1 1 1 1 1 1 1 1	Norm 1074 2000 1074 2328 4656 3492 3880 5820 3000 4656 3492	Emrg 1267 2000 1267 2328 4656 3492 3880 5820 3000 4656 3492	LD 1334 2060 1334 2400 4800 3600 4000 6000 3090 4800 3600	1193 2000 1193 2328 4656 3492 3880 5820 3000 4656 3492	1362 2000 1362 2328 4656 3492 3880 5820 3000 4656 3492	1423 2060 1423 2400 4800 3600 4000 6000 3090 4800 3600	1264 2000 1264 2328 4656 3492 3880 5820 3000 4656 3492	1421 2000 1421 2328 4656 3492 3880 5820 3000 4656 3492	1478 2060 1478 2400 4800 3600 4000 6000 3090 4800 3600
Disconnect (2000A) SS Wire (853.7 ACAR 24/13) CT (2000/5MR) Relay CT (50) Relay CT (21/79) CT (2000/5MR) Relay CT (87) Circuit Breaker (3000A) Relay CT (50) Relay CT (87) CT (2000/5MR)	2A 1 2A 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Norm 1074 2000 1074 2328 4656 3492 3880 5820 3000 4656 3492 2328	Emrg 1267 2000 1267 2328 4656 3492 3880 5820 3000 4656 3492 2328	LD 1334 2060 1334 2400 4800 3600 4000 6000 3090 4800 3600 2400	1193 2000 1193 2328 4656 3492 3880 5820 3000 4656 3492 2328	1362 2000 1362 2328 4656 3492 3880 5820 3000 4656 3492 2328	1423 2060 1423 2400 4800 3600 4000 6000 3090 4800 3600 2400	1264 2000 1264 2328 4656 3492 3880 5820 3000 4656 3492 2328	1421 2000 1421 2328 4656 3492 3880 5820 3000 4656 3492 2328	1478 2060 1478 2400 3600 4800 6000 3090 4800 3600 2400
Disconnect (2000A) SS Wire (853.7 ACAR 24/13) CT (2000/SMR) Relay CT (50) Relay CT (21/79) CT (2000/SMR) Relay CT (87) Circuit Breaker (3000A) Relay CT (50) Relay CT (87) CT (2000/SMR) Relay CT (87)	2A 1 2A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Norm 1074 2000 1074 2328 4656 3492 3880 5820 3000 4656 3492 2328 6208	Emrg 1267 2000 1267 2328 4656 3492 3880 5820 3000 4656 3492 2328 6208	LD 1334 2060 1334 2400 4800 3600 4000 6000 3090 4800 3600 2400 6400	1193 2000 1193 2328 4656 3492 3880 5820 3000 4656 3492 2328 6208	1362 2000 1362 2328 4656 3492 3880 5820 3000 4656 3492 2328 6208	1423 2060 1423 2400 4800 3600 4000 6000 3090 4800 3600 2400 6400	1264 2000 1264 2328 4656 3492 3880 5820 3000 4656 3492 2328 6208	1421 2000 1421 2328 4656 3492 3880 5820 3000 4656 3492 2328 6208	1478 2060 1478 2400 3600 4800 3090 4800 3090 4800 3600 2400
SS Wire (853.7 ACAR 24/13) Disconnect (2000A) SS Wire (853.7 ACAR 24/13) CT (2000/5MR) Relay CT (50) Relay CT (21/79) CT (2000/5MR) Relay CT (87) Circuit Breaker (3000A) Relay CT (50) Relay CT (50) Relay CT (87) CT (2000/5MR) Relay CT (87) CT (2000/5MR) Relay CT (87) CT (2000/5MR) SS Wire (853.7 ACAR 24/13)	2A 1 2A 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Norm 1074 2000 1074 2328 4656 3492 3880 5820 3000 4656 3492 2328	Emrg 1267 2000 1267 2328 4656 3492 3880 5820 3000 4656 3492 2328	LD 1334 2060 1334 2400 4800 3600 4000 6000 3090 4800 3600 2400	1193 2000 1193 2328 4656 3492 3880 5820 3000 4656 3492 2328	1362 2000 1362 2328 4656 3492 3880 5820 3000 4656 3492 2328	1423 2060 1423 2400 4800 3600 4000 6000 3090 4800 3600 2400	1264 2000 1264 2328 4656 3492 3880 5820 3000 4656 3492 2328	1421 2000 1421 2328 4656 3492 3880 5820 3000 4656 3492 2328	1478 2060 1478 2400 3600 4000 6000 3090 4800 3600

Ratings Database Controls


- Strict access controls to Ratings Database
 - Managed by internal access management group —
 - Usernames and passwords are provided ____
 - Write access is only available to small group of engineers —

A comprehensive review of the Facility Rating is performed any time an equipment entry is added, removed, or modified (with some exceptions)

All modifications are peer reviewed by a second engineer \bullet



Additional Ratings Database "Controls"

• Transmission System Equipment Library

• Ratings Database equipment entry manual

Туре	Manufacturer
T SS Wire	Mitsubishi
T SS Wire	None

Equipme	nt Ratings																			
[Create I	Rating]																			
		Su	ummer 35C (95	iF)		30C (86F)			25C (77F)		Spri	ng/Fall 20C (68F)		15C (59F)		Winter 1	OC (50F)	5C (41F)	0C (32F)
L	abel Class	Norm	Emrg	LD	Norm	Emrg	LD	Norm	Emrg	LD	Norm	Emrg	LD	Norm	Emrg	LD	Norm	Emrg LD	Norm Emrg LD	Norm Emrg LD
? Edit	2A	1424	1745	1908	1493	1798	1955	1558	1849	2001	1619	1899	2045	1678	1946	2088	1735	1992 2130	0 1789 2037 2170	1840 2080 2209

Model	Description
GIS	3000A
AL BAR	0.225in x 4.5in AL
AL BAR	0.25in X 6in AL
AL BAR	0.25in x 4in AL BAR
AL BAR	0.313in x 3in AL
AL BAR	0.375in x 4in AL
AL BAR	0.375in x 6in AL
AL BAR	0.438in x 3in AL
AL BAR	0.438in x 4in AL
AL BAR	0.5in x 3in AL
AL BAR	0.5in x 4in AL
AL BAR	0.5in x 5.5in AL
AL BAR	0.5in x 6in AL
AL BAR	0.5in x 7in AL
AL BAR	0.75in X 4in AL
AL BAR	0.75in x 5in AL 6061-T6
AL BAR	0.75in x 6in AL
AL BAR	0.938in x 6in AL
AL BAR	1in X 4in AL
AL BAR	1in X 8in AL
AL BAR	3in x 3.5in AL
AL CHANNEL	5in Channel 0.19in WebThick AL
AL CHANNEL	6in Channel 0.225in WebThick AL
AL CHANNEL	6in Channel 0.314in WebThick AL
AL CHANNEL	6in Channel 0.437in WebThick Al
CU BAR	0.25in X 4in CU
CU BAR	0.25in x 6in CU
CU BAR	0.5in x 4in CU
CU BAR	0.5in x 6in CU
CU BAR	0.75in X 6in CU
CU PIPE	1.5in CU PIPE

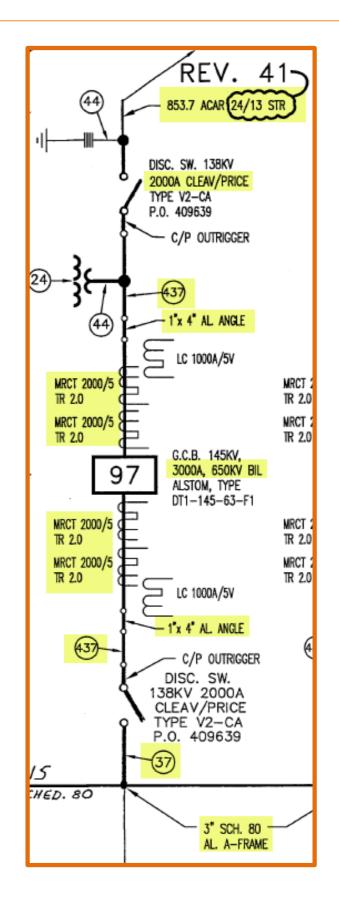
Facility Energization Controls

- Post Construction Field Reviews
 - Required for all transmission projects ____
 - Engineering/Commissioning personnel physically inspect equipment with construction _____ team to verify as-built conditions match prints
 - Any equipment that is grounded and cleared is inspected ____
- **Operations Center Pre-Energization Checklist**
 - Includes checks for Facility Rating updates ____
 - Facility is not energized until all pre-reqs have been met

Date:	• .
Construction Lead:	2
lame	Signature
ingi neer:	
Name	Signature
Name	Signature
lame	Signature

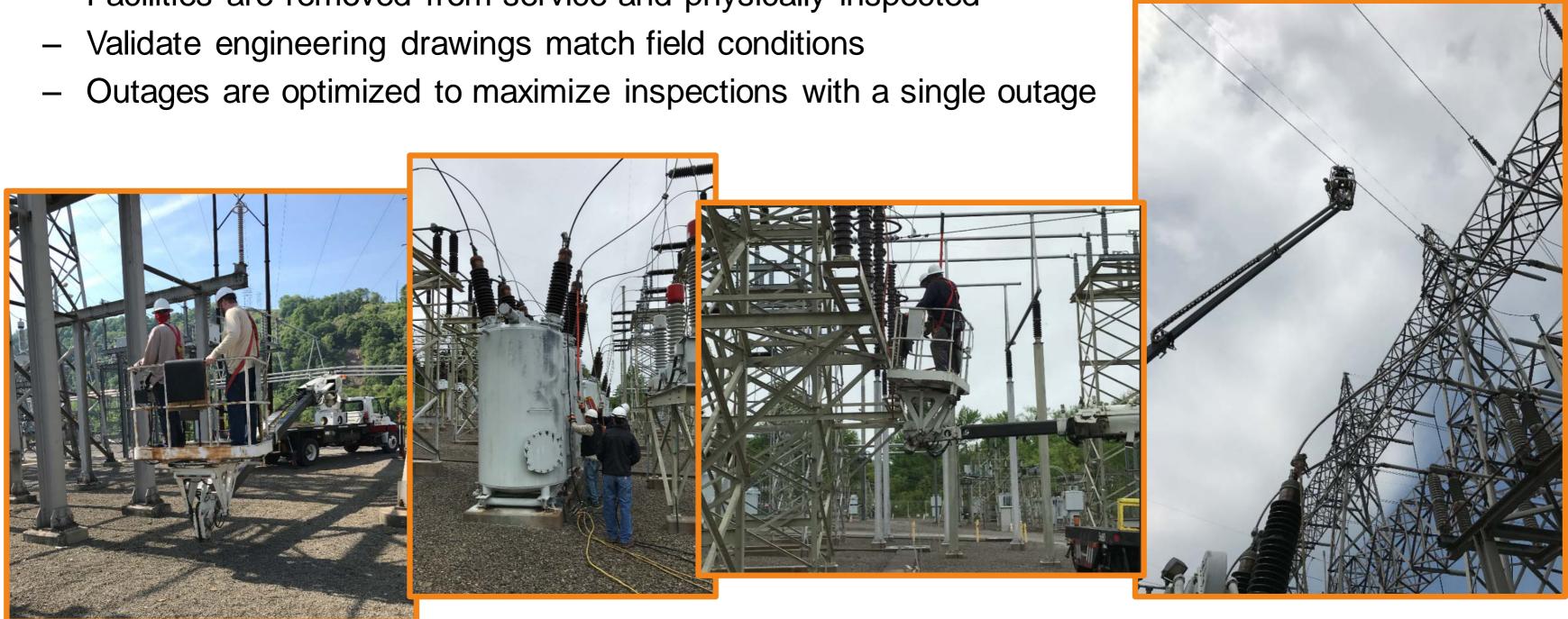
Data Classification

INIT	IAL ENERGIZ	LATION PROCEDURE
	<facil< td=""><td>ity Name></td></facil<>	ity Name>
		At
		Substation
	Revision	Date


Verification of documents	Date Received	Initials	Verification of documents	Date Received	Initials
Circuit Maps			Updated Ratings – Tfmr		
(Manager, GIS and Mapping)			(Senior Manager, System		
			Planning)		
Station Single Lines			Updated Ratings - Line		
(Manager, Substation			(Senior Manager, System		
Engineering & Manager			Planning)		
Substation Control					
Engineering)					
RT Maps			Reclosing Settings/Changes		
(Manager, Protection			(Manager, Protection		
Engineering)			Engineering)		
Customer Single Lines			Temporary Settings acquired		
(Manager, Substation			and approved		
Engineering & Manager			(Manager, Protection		
Substation Control			Engineering)		
Engineering)					
SCADA display updated			Equipment Marking signs		
(Manager, Operations			installed		
System)			(Supervisor, Substation		
5			Protection and Control)		
SOC Mapboard updated			Key Interlocks installed and		
(Senior Manager,			functional		
Transmission Operations)			(Supervisor, Substation		
- ,			Electrical Maintenance)		
State Estimator updated			Transmission Post-Construction		
(Senior Manager, System			field review		
Planning)			(Manager, Substation		
-			Engineering)		
eDART cut-in flag			Transmission Planning		
(Manager, Control Room			Breaker replacement notified		
Operations)			(Senior Manager,		
			System Planning)		

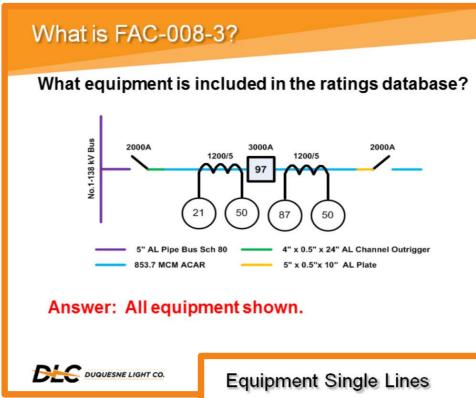
Detective Controls

- Annual 10% Ratings Database Review
 - Comprehensive review of Facility Rating
 - Validate Ratings Database matches engineering drawings

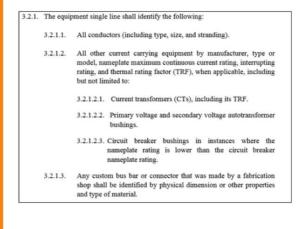

		Summer 35C (95F) Sprin				/Fall 200	C (68F)	Winter 10C (50F)		
Туре	Class	Norm	Emrg	LD	Norm	Emrg	LD	Norm	Emrg	LD
T SS Wire (4.0in AL PIPE)	2A	3263	4070	4479	3744	4443	4809	4025	4669	5012
T SS Wire (Two (2) - 3.0in AL PIPE)	2A	4160	5167	5678	4767	5641	6099	5124	5929	6358
T SS Wire (4.0in AL PIPE)	2A	3263	4070	4479	3744	4443	4809	4025	4669	5012
T Disconnect (2000A)	1	2000	2000	2060	2000	2000	2060	2000	2000	2060
T SS Wire (2000 AAC 91 str.)	2A	1850	2209	2335	2058	2375	2489	2182	2477	2584
T SS Wire (1in X 4in AL)	2A	3087	3754	4093	3499	4080	4386	3743	4280	4566
T CT (2000/5MR)	1	3880	3880	4000	3880	3880	4000	3880	3880	4000
T Relay CT (50)	1	7760	7760	8000	7760	7760	8000	7760	7760	8000
T Relay CT (21)	1	5820	5820	6000	5820	5820	6000	5820	5820	6000
T Circuit Breaker (3000A)	1	3000	3000	3090	3000	3000	3090	3000	3000	3090
T Relay CT (50)	1	7760	7760	8000	7760	7760	8000	7760	7760	8000
T Relay CT (87/79)	1	5820	5820	6000	5820	5820	6000	5820	5820	6000
T CT (2000/5MR)	1	3880	3880	4000	3880	3880	4000	3880	3880	4000
T SS Wire (1in X 4in AL)	2A	3087	3754	4093	3499	4080	4386	3743	4280	4566
T SS Wire (2000 AAC 91 str.)	2A	1850	2209	2335	2058	2375	2489	2182	2477	2584
T Disconnect (2000A)	1	2000	2000	2060	2000	2000	2060	2000	2000	2060

Detective Controls

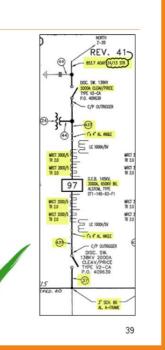
- Annual 5% Field Review
 - Facilities are removed from service and physically inspected



Training


- Annual training for engineering teams
 - Overview of standard _____
 - Actions/expectations of various groups —
 - Communications between groups ____

- Annual refresher training for field personnel
 - Overview of standard
 - Expectations for field changes / red-lined drawings ____
 - Review specific examples of past oversights ____



Equipment single lines should contain the information as shown below:

DUQUESNE LIGHT CO.

Documentation

- Transmission Planning Manual FAC-008 Sections
 - Equipment rating methodologies _____
 - Requirements for ratings database maintenance ____
 - Ratings communications

- Engineering Manual
 - Requirements for information contained on drawings ____
 - Approval of field modifications ____
 - Post-construction field reviews _____

DUQUESNE LIGHT CO.	Transmission Pl	anning Manual
stem Ratings Database	Procedure Number:	TPM-FAC-8-002
Sterri Ratings Database	Revision Number:	1.9
DENTIAL DOCUMENT	Effective Date:	December 18, 2019

NERC Standard(s) Reference: FAC-008-3

3.2.1. The equipment single line shall identify the following:

- 3.2.1.1. All conductors (including type, size, and stranding).
- All other current carrying equipment by manufacturer, type or 3.2.1.2. model, nameplate maximum continuous current rating, interrupting rating, and thermal rating factor (TRF), when applicable, including but not limited to:
 - 3.2.1.2.1. Current transformers (CTs), including its TRF.
 - 3.2.1.2.2. Primary voltage and secondary voltage autotransformer bushings.
 - 3.2.1.2.3. Circuit breaker bushings in instances where the nameplate rating is lower than the circuit breaker nameplate rating.
- 3.2.1.3. Any custom bus bar or connector that was made by a fabrication shop shall be identified by physical dimension or other properties and type of material.

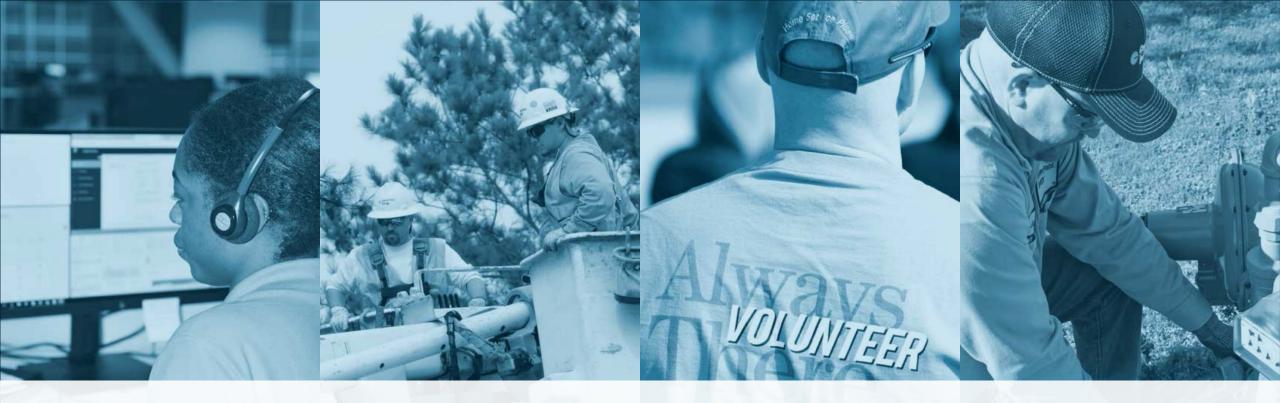
Planned Work vs. Emergent Work

• Controls still apply during emergency situations

• Post-Construction Field Reviews

• Operations Center Check

Potential Future Controls


- Establishment of FAC-008 charter
 - Cross functional team accountable to executive steering group
 - Identify risks in Facility Ratings process ____
 - Brainstorming controls to mitigate risks _____
- Potential controls include:
 - Better utilization of work management software
 - Prerequisites to ensure specific steps are being completed
 - Jobs cannot advance until task have been completed
 - Examples include: drawing manifests sent, drawings issued, post-construction field review complete, ratings database updated, etc.
 - Enhanced Training
 - More role specific training
 - Use of pre-recorded FAC-008 training for new hires

Facility Ratings

Ryan Abshier Indiana Planning & Protection Manager

August 25, 2020

<section-header>

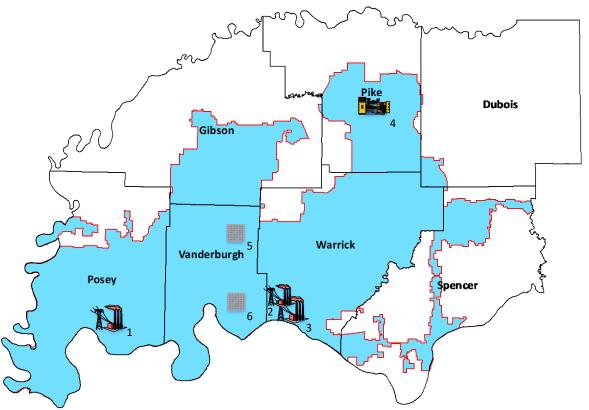
Energy Reliability. Service. Value. Innovation.

Agenda

- Vectren, A CenterPoint Energy Company
- Facility Ratings Methodology
- Entering and Maintaining Facility Ratings
- Reviewing Database
- Change Management
- Mapping Process

Vectren Background

Electric Territory


Vectren Energy Delivery of Indiana – "Vectren South" (SIGECO)

- 1,308 square miles
- 7-counties
- 144,000 electric customers
- 1,360 MW total generating capacity
- 4 MW of solar / 1 MW battery
- 1,445 MW total load

Generating Facilities

1 AB Brown

- 2 Warrick Unit 4
- 3 FB Culley
- 4 Blackfoot Clean Energy Facility
- 5 Volkman Road Solar / Battery
- 6 Oakhill Road Solar

Facility Ratings Methodology

- Methodologies
 - Conductors
 - Ratings calculated using ambient temperature, wind speed, and other parameters
 - Dual conductor ratings are 90% of the sum of the individual conductor ratings
 - All other devices
 - Nameplate ratings
- Emergency Ratings
 - Transformers only
 - 5% over highest rating
 - Limited to 4 hours total in a 24 hour period
- Seasonal Ratings
 - Winter
 - Summer
- Not used Dynamic Line Ratings and Ambient Adjusted Ratings

Facility Ratings Database

1	A	В	С	D	E	F	G	Н	
1		Summary of Limiting Power Ratings	by Segme	nt					
2	Date Generated:	3/9/2020 10:29	# of Segments	320					
	Segment	Segment	Summer	Summer	Winter	Winter			
3	PSSe Name	Long Name	Normal	Emergency	Normal	Emergency			
4	05ROCKPT«10AEP_T«Z-82'	AEP Construction to AEP IM Tap	143	148	143	148			
5	07HETCTY«10HE_TAP«Y-69	HE Tell City Emergency Tap to HE Tell City Emergency Tie	72	72	72	72			
6	07MIDWAY«10NTVL69«HE1"	Newtonville 69 to Tie-07MIDWAY	54	54	60	60			
7	07MIDWAY«10NTVL69«HE2"	Newtonville 69 to Tie-07MIDWAY	48	48	48	48			
8	07NWTNVL«10NTVL16«1"	HE Newtonville-Troy to Newtonville 161	335	335	335	335			
9	07RAMSY5«08DUFF«1"	Duff 345 to Ramsey (HE)	1195	1195	1195	1195			
10	07RATTAP«10SIGTAP«HE1"	SIG-TAP to Tie-07RATTAP	217	249	273	286			
11	07TRY_69«10NTVL69«1"	Newtonville 69 to Troy (HE)	105	105	130	130			
12	07VICTRY«10VICT_T«Y-24'	Tie-07VICTRY to Victory Tap	102	102	102	102			
13	07WAP_HE«10WP_SIG«1"	Waupaca to Waupaca (HE)	143	143	143	143			
14	07WINFLD«10NEWHRM«HE1"	New Harmony to Tie-07WINFLD	68	68	91	91			
15	08DUFF«08FRNCSC«1"	Duff 345 to Francisco 345	1195	1195	1195	1195			
16	08DUFF«10DUFF13«T1'	Duff 138 to Duff 345	448	470	448	470			
17	08FRNCSC«08GIBSON«1"	Francisco 345 to Gibson (Duke)	1386	1386	1594	1594			
18	08FRNCSC«10FRAN13«T1'	Francisco 138 to Francisco 345	448	470	448	470			
19	08GIBSON«10ABB345«X-15"	AB Brown 345 to Gibson (Duke)	1430	1430	1712	1712			
20	080KLND«10FRAN13«Z-80"	Francisco 138 to Tie-08OKLND	291	291	325	334			
21	080KLND«100AKCTY«PS1'	Oakland City 69 to Tie-08OKLND	82	82	96	96			
22	10762288«10802288«ZVV'	Z-76 Tap to Z-80	478	478	478	478			
23	10762288«10FRAN13«Z-76'	Z-76 Tap/Francisco 138 to Z-80	314	314	375	375			
24	<u>10762288«10TOYO_S«Z-76-1'</u>	10762288 to Toyota South	314	314	375	375			
25	10802288«10ELOT13«Z-80'	Z-76 Tap/Elliott 138 to Z-80	314	314	375	375			
		O_S«Z-76-2 10UNITD1«10UNITD2«Y-57 10VIGOCL«1	OVIGO_T«Y-68	10WARIN	G«10WARNR	T«Z-72 10	WHIRLP«1	IOWHRL_T«Y	-55

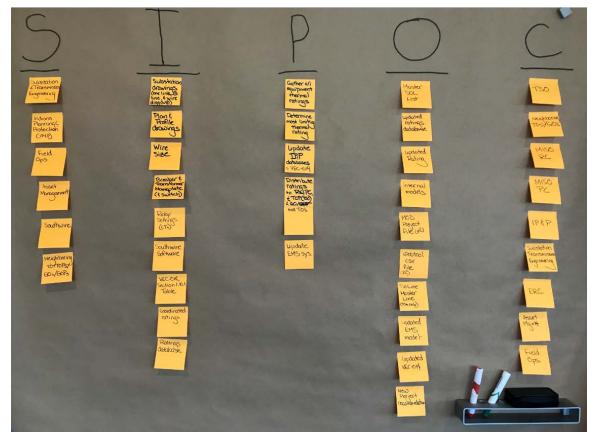
Facility Ratings Database

4	A	В	С	D	E	F	G	Н		J	K	L	M	N	0	P	Q
	Line Y-32 Facility Ratings																
!		69k	V Line from	Aventine to Le	onard Rd	. ('10 A	VENTN	') to ('10	LEONR	D')							
	Station Name	Part	6 h - l	Emilana	Summer I	Normal	Summer E	mergency	Winter I	Vormal	Winter En	nergency	Chook	Voltage	Author	Date	Notes
	station Name	Group	Symbol	Equipment	Ampacity	MVA	Ampacity	MVA	Ampacity	MVA	Ampacity	MVA	Check	vonage	Aution	Created	Motes
1	Aventine	177	177	CT Setting	2000	239	2000	239	2000	239	2000	239	γ	0.069	Brantly Sturgeon	6/11/2008	
1	Aventine	177	177	CT Setting	2000	239	2000	239	2000	239	2000	239	Y	0.069	Brantly Sturgeon	6/11/2008	
	Aventine	177		CT Setting	2000	239	2000	239	2000	239	2000	239		0.069	Brantly Sturgeon	6/11/2008	
1	Aventine	177	177	CT Setting	2000	239	2000	239	2000	239	2000	239		0.069	Brantly Sturgeon	6/11/2008	
1	Aventine	177	Dual 500 CU	Jumpers	1930	231	1930	231	2300	275	2300	275	Y	0.069	Ryan Abshier	7/2/2009	Updated Jumper Rating
) /	Aventine	177	177	Breaker	2000	239	2000	239	2000	239	2000	239		0.069	Brantly Sturgeon	6/11/2008	
1	Aventine	177	171	Switch	2000	239	2000	239	2000	239	2000	239	Y	0.069	Brantly Sturgeon	6/11/2008	
! /	Aventine	177	173	Switch	2000	239	2000	239	2000	239	2000	239	γ	0.069	Brantly Sturgeon	6/11/2008	
) /	Aventine	bus	4 IPS AL	Bus Conductor	2888	345	2888	345	3690	441	3690	441	Y	0.069	Ryan Abshier	6/21/2010	
ŀ,	Aventine	bus	500	Switch	2000	239		239	2000	239	2000	239		0.069	Brantly Sturgeon	6/11/2008	
5 /	Aventine/Leonard Rd.			Line Conductor 100	858	103		103	1023	122	1023	122		0.069	Ryan Abshier	6/21/2010	
i I	_eonard Rd.	1277	1277	CT Setting	2000	239	2000	239	2000	239	2000	239		0.069	Ryan Abshier	7/6/2016	
	_eonard Rd.	1277	1277	CT Setting	2000	239	2000	239	2000	239	2000	239		0.069	Ryan Abshier	7/6/2016	
3	_eonard Rd.	1277	1277	CT Setting	2000	239	2000	239	2000	239	2000	239		0.069	Ryan Abshier	7/6/2016	
}	_eonard Rd.	1277		CT Setting	2000	239	2000	239	2000	239	2000	239		0.069	Ryan Abshier	7/6/2016	
)	_eonard Rd.	1277	Dual 500 CU	Jumpers	1930	231	1930	231	2300	275	2300	275	γ	0.069	Ryan Abshier	7/6/2016	
1	_eonard Rd.	1277	1277	Breaker	2000	239	2000	239	2000	239	2000	239	Y	0.069	Ryan Abshier	7/6/2016	
2	_eonard Rd.	1277	1271	Switch	2000	239	2000	239	2000	239	2000	239		0.069	Ryan Abshier	7/6/2016	
3	_eonard Rd.	1277	1273	Switch	2000	239	2000	239	2000	239	2000	239		0.069	Ryan Abshier	7/6/2016	
	Leonard Rd.	1300	1300	CT Setting	2000	239	2000	239	2000	239	2000	239		0.069	Ryan Abshier	7/6/2016	
5	Leonard Rd.	1300	1300	CT Setting	2000	239	2000	239	2000	239	2000	239		0.069	Ryan Abshier	7/6/2016	
	Leonard Rd.	1300	1300	CT Setting	2000	239	2000	239	2000	239	2000	239		0.069	Ryan Abshier	7/6/2016	
7	Leonard Rd.	1300	1300	CT Setting	2000	239	2000	239	2000	239	2000	239	Y	0.069	Ryan Abshier	7/6/2016	

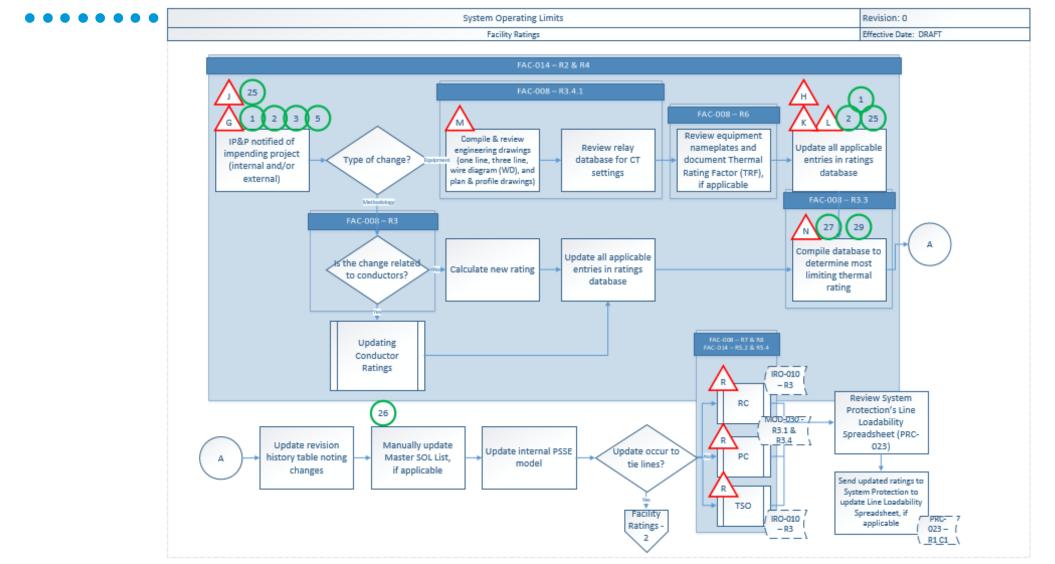
Facility Ratings Database

A	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	P	Q
19 Leonard Rd.	1277		CT Setting	2000	239	2000	239	2000	239	2000	239	Υ	0.069	Ryan Abshier	7/6/2016	
20 Leonard Rd.	1277	Dual 500 CU	Jumpers	1930	231	1930	231	2300	275	2300	275		0.069	Ryan Abshier	7/6/2016	
21 Leonard Rd.	1277	1277	Breaker	2000	239	2000	239	2000	239	2000	239		0.069	Ryan Abshier	7/6/2016	
22 Leonard Rd.	1277	1271	Switch	2000	239	2000	239	2000	239	2000	239	Y	0.069	Ryan Abshier	7/6/2016	
23 Leonard Rd.	1277	1273	Switch	2000	239	2000	239	2000	239	2000	239		0.069	Ryan Abshier	7/6/2016	
24 Leonard Rd.	1300		CT Setting	2000	239	2000	239	2000	239	2000	239		0.069	Ryan Abshier	7/6/2016	
25 Leonard Rd.	1300		CT Setting	2000	239	2000	239	2000	239	2000	239		0.069	Ryan Abshier	7/6/2016	
26 Leonard Rd.	1300	1300	CT Setting	2000	239	2000	239	2000	239	2000	239		0.069	Ryan Abshier	7/6/2016	
27 Leonard Rd.	1300	1300	CT Setting	2000	239	2000	239	2000	239	2000	239		0.069	Ryan Abshier	7/6/2016	
28 Leonard Rd.	1300	Dual 500 CU	Jumpers	1930	231	1930	231	2300	275	2300	275		0.069	Ryan Abshier	7/6/2016	
29 Leonard Rd.	1300	1300	Breaker	2000	239	2000	239	2000	239	2000	239		0.069	Ryan Abshier	7/6/2016	
30 Leonard Rd.	1300	1302	Switch	2000	239	2000	239	2000	239	2000	239		0.069	Ryan Abshier	7/6/2016	
31 Leonard Rd.	1300	1304	Switch	2000	239	2000	239	2000	239	2000	239		0.069	Ryan Abshier	7/6/2016	
32 Leonard Rd.	bus	4 IPS AL	Bus Conductor	2888	345	2888	345	3690	441	3690	441		0.069	Ryan Abshier	7/6/2016	
33 Leonard Rd.	line	1370	Line Switch	2000	239	2000	239	2000	239	2000	239	γ	0.069	Ryan Abshier	7/6/2016	
34			Limitin	g Equipn	nent Rat	ings										
35 Station Name	Part	<i>a</i>		Summer	Normal	Summer Ei	mergency	Winter	Normal	Winter En	nergency				Date	N
36 Station Name	Group		Equipment	Ampacity		Ampacity	MVA	Ampacity	MVA	Ampacity	MVA		Voltage	Author	Created	Notes
37 Aventine/Leonard Rd.	line	477 ACSR 26/7	Line Conductor 100	858	103	858	103	1023	122	1023	122	γ	0.069	Ryan Abshier	6/21/2010	
38 01	/erall Lim	niting Rating			103		103		122		122					
39																
40 Goto Limit Summary Page																
41																

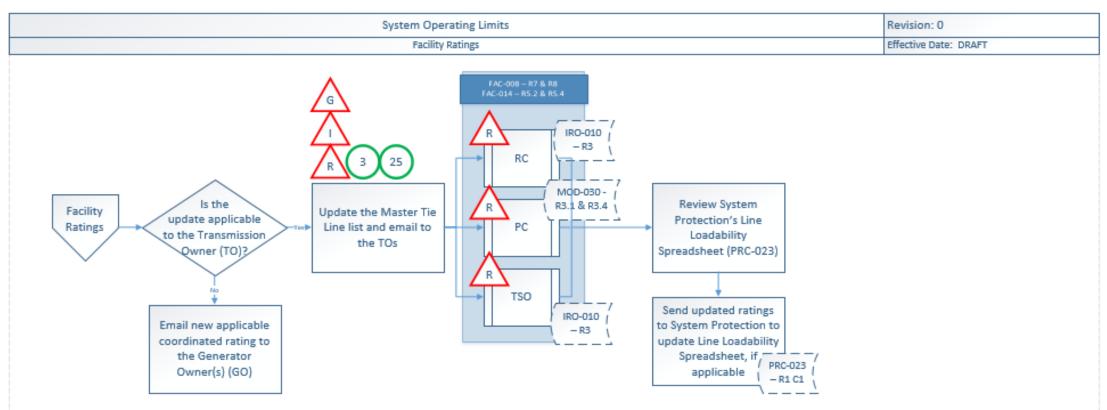
Change Management



- Planning Engineer involved in scoping of projects
- Planning Engineer participates in project coordination meetings (with engineering, field operations, and system operations)
- Issued For Construction (IFC) design package used for updates
- Database compared to as-built package and reviewed with engineers
 - Updates sent to entities if changes identified
- Planning Engineer notified of emergency replacements by engineering, field operations, or system operations
- Emergency replacement information entered in Database and peer reviewed before submission



We began by completing a SIPOC map, which stands for suppliers, inputs, processes, outputs, and customers. The SIPOC ensures all parties involved in the process are accounted for when mapping the current state.


Visio flowcharts – facility ratings

Visio Flowcharts – Facility Ratings (cont'd)

	System Operating Limits		Revision: 0
	Updating Conductor Ratings		Effective Date: DRAFT
a a b c c c c c c c c c c c c c		S Update conductor table in ratings database	C-014 tables ssion Line, or Ratings- ne document
Tex			

Process Mapping

- Mapped stability ratings updates process
- Mapped voltage limit update process
- Mapped process for submitting to various entities
 - Neighboring utilities
 - TSO (control center)
 - Planning Coordinator
 - Reliability Coordinator

Identified Process Risks

- Several potential risks were identified that could lead to inaccurate or incomplete data
 - Documented processes
 - Software
 - New personnel
- Risks identified in this mapping process were not necessarily realized or experienced issues, they were merely potential risks we thought of that COULD lead to issues
 - This concept took a while to adapt to

Identified Controls

- Preventative Controls
 - Indiana Planning & Protection attend bi-weekly and monthly project coordination meetings with Engineering, Field Operations, and TSO
 - Project Managers send project design reviews (PDR) to Indiana Planning & Protection identifying the scope of upcoming projects
 - Planning Engineers receive outage communication from TSO to review unplanned emergency work to verify if unanticipated outages will occur
 - Planning Engineers verify data with external entities
- Detective Controls
 - Planning Engineer completes a peer review with a High Voltage Engineer after entering the Facility Ratings into the database
 - Planning Engineer completes peer review with other Planning Engineer or Manager prior to finalization
 - Planning Engineer performs MOD-032 model review comparing elements in the Facility Ratings database to the planning model
 - Planning Engineer compiles Facility Ratings database one transmission line at a time
 - Planning Engineer reviews entries by updating SOL spreadsheet and creating comparison table

Questions & Answers

IMPLEMENTING INTERNAL CONTROLS -A GO/GOP'S PERSPECTIVE ON FAC-008

Nicholas Poluch Senior Manager, NERC & Cyber Compliance Talen Energy

Forward Together • ReliabilityFirst

About Talen Energy

> Talen was formed and became a public company in June 2015

- Represents the combination of the former PPL unregulated generation assets and three Riverstone generation portfolios.
- In December 2016, Talen was taken private through an acquisition by Riverstone.

Talen is a privately-owned Independent Power Producer (IPP)

- IPPs own stations that generate electric power for sale to regional transmission organizations and commercial, industrial, and residential customers.
- IPPs, like most generators in competitive markets, must operate very efficiently.

> What makes Talen Energy unique?

- We generate approximately 15,000 MW through 21 plants in 7 states.
 - We are the largest owner of electricity generation in the Commonwealth of Pennsylvania.
- We employ ~3,000 people throughout the US.

Talen Terminology

Plant NERC Contact

- PNC
- Note: PNC is not to be confused with Potential Non Compliance
- Regional NERC Contact
 - PNCs and RNCs have other job responsibilities besides NERC
- TE-NERC-212 Facility Ratings Procedure
 FAC-008 Procedure
- Government Accounting Office (GAO) Pyramid Internal Controls Pyramid

Key Takeaways

➢ Risk-based	Talen's Internal Controls Program prioritizes limited resources to areas of higher risk; BES reliability & compliance are always paramount
≻ Scalable	Talen's Internal Controls Program is designed for ease of adaptability to changes in personnel or fleet asset configuration
> Procedures	Clarity, local guidance and interpretations of NERC terms are hallmarks of good NERC procedures, <u>not simple regurgitation of Standards' language</u>
Internal Controls Pyramid	Provides a simple framework to build strong internal controls

Agenda

Climb the internal controls pyramid

Internal Controls Pyramid: Control Environment

Control Enviroment

- > Talen's Control Environment has 4 Elements
- Plant Accountability in FAC-008
- > Interpretations in FAC-008 Procedure

Control Environment (cont'd)

> Talen's 4 Control Elements

- 1. Team: NERC compliance team, Training, Corporate Security, and Operations
- 2. Independent: Independent reporting structure; NERC Group reports to the CEO separately
- **3. Uniformity**: Uniformity of fleet reporting and fleet expectations thru the MRRE registration
 - During an audit it was very clear that we had different expectation on what was required for evidence
- 4. Procedure: FAC-008 Facility Ratings Procedure establishes the control environment Important Aspects

Accountabilities

Interpretations...what do NERC terms mean to Talen

Control Environment: Accountabilities

Plant Accountability in FAC-008

- Plant Manager:
 - Assigns personnel to perform the obligations stated in this procedure
- Plant NERC Contact (PNC):
 - Informs the Regional NERC Contact (RNC) of any replacements, Operating Limitations or ratings changes for equipment subject to FAC-008-3
 - Informs the RNC of any requests for FAC-008-3 data by the Reliability Coordinator (RC), Planning Coordinator (PC), Transmission Planner (TP), TO or Transmission Operator (TOP) pursuant to R7 or R8 of the standard (see paras. 6.4 and 6.5 of this procedure)
- Regional NERC Contact (RNC):
 - Provides assistance to PNC on clarification of Potential FAC-008 issues
 - Passes PNC inputs to the NERC Group for action

Control Environment: Accountabilities (cont'd)

- Corporate NERC Team Accountability in FAC-008 Procedure
 - Manager, NERC Operations & Planning Standards
 - Responsible for creating and maintaining FAC-008-3 data sheets (delegating work as appropriate)
 - Responds to FAC-008-3 R7 or R8-related requests

Control Environment: Interpretations

Interpretations in FAC-008 Procedure

• Element: Any electrical device with terminals that may be connected to other electrical devices such as a generator, transformer, circuit breaker, bus section, or transmission line. An Element may be comprised of one or more components...

- What does Element mean to Talen??

- Talen Interpretation: NERC uses the word "Element" to refer to an individual piece of equipment, as shown above, and also in a collective sense. "Element" is used in this procedure to refer to the individual pieces of equipment for which Talen must identify Equipment Ratings for FAC-008-3.
- Emergency Rating: The rating as defined by the equipment owner that specifies the level of electrical loading or output, usually expressed in megawatts (MW) or MVAR or other appropriate units, that a system, facility, or element can support, produce, or withstand for a finite period. The rating assumes acceptable loss of equipment life or other physical or safety limitations for the equipment involved.
 - What does Emergency Rating mean to Talen??
 - Talen Interpretation: Talen does not operate Elements above their electrical Normal Ratings. The Emergency and Normal values for FAC-008-3 Equipment Ratings and Facility Ratings are therefore the same. Both are listed on the data sheet.

Internal Controls Pyramid: Risk Assessment

Risk Assessment

- > What is Risk assessment to Talen?
- > Talen's attribute risk assessment has 4 Goals
- Process for reviewing identified risk or potential risks-Talen CCR Process
- > Industry and Regulatory Guides to minimize risk
- > Challenges of FAC-008 Risks from GO perspective

Risk Assessment (cont'd)

> What is Risk assessment to Talen?

• Attribute risk assessment

> Talen's 4 attribute risk assessment Goals

- 1. Active: Risk assessment is an on-going, active process. For Talen it means reviewing risks and reacting to feedback from the <u>operations plant team</u>.
- **2. Cross Functional**: Cross-functional review team which includes Operations, Security and NERC Group
- 3. Identifies: Identifies potential non-compliances and course corrects
- **4. Usable:** Tools for risk assessment are <u>Usable</u> by implementing team Example for Talen: PNC checklist

Risk Assessment (cont'd)

> Talen CCR Process

- Compliance Condition Reporting (CCR): Process used to evaluate potential non-compliance events; events treated similarly as a "near miss" in the Safety environment, where we use it as an opportunity to improve
 - CCR Form has internal control items listed below
 - "Was this non-conforming condition previously reported or discovered?"
 - This question helps to evaluate adequacy of existing internal controls
 - "Do we need additional internal controls?"

Extent of Condition evaluation looks at similar vulnerabilities across the fleet

Reliability Impact and Risk Assessment

- Potential impact to BES
- Actual impact to BES

Risk Assessment: Guides

- Industry: Active Participant in Industry-wide feedback loops (i.e., North American Generation Forum (NAGF))
- Guides: FAC-008 New CMEP Practice Guide
 - Can the new suggested CMEP internal controls be incorporated easily into the current internal controls program?
 - Is there additional costs for new controls for Plant or NERC team?
 - What is the cost of controls vs BES/Compliance risk?
 - Note: New controls are piloted with Plants before implementation

Potential Risks of FAC-008

Challenges of FAC-008

- FAC-008 no activity then a flurry of activity
- New projects such as solar additions....are we getting the information to support FAC-008??
- Small retro-fit projects that float under the radar screen

Internal Controls Pyramid: Control Activities

Control Activities

Control Activities

- Plants have standardized, NERC data sheets and check lists
- Work management systems
- Training (building human capital)-reviewed monthly on PNC checklist for new personnel
- Ensure that Preventive, Detective and Corrective aspects are addressed
- FAC-008-Facility Ratings Procedure
- What other control activities can be added?

Control Activities (cont'd)

- FAC-008 Facility Ratings Procedure: Talen NERC procedures provides clarity and instructions, rather than just reiterating the Standard
 - Examples of statements in FAC-008 Procedure
 - Statement 1: FAC-008 deals only with electrical ratings, not boiler or turbine capabilities
 - Statement 2: Requirement 2
 - "Relay protective devices" refers to loadability relays (compliant with PRC-025 = Pass)
 - "Transformers" refers to GSUs and CTs

Control Activities

> What other control activities can be added??

- Change control at the corporate level to catch projects?
 - When project is being approved add a box that its been vetted by NERC Team
- Small retro-fit projects at the plant need to be vetted through the RNC

Internal Controls Pyramid: Monitoring

Monitoring

> Monitoring

- Annual Self Certifications
- Annual RSAW updating
- Biweekly NERC meetings
- Quarterly/Semi-annual RNC Workshops
- Monthly PNC and RNC Checklists

PNC Checklist

Talen Energy NERC Plant Monthly Checklist Menu

Master Rev. 0 Effective for April 2020 reports

Plant:

Month and Year Being Reported: _____/

Instructions

- Form is to be printed out and filled out each month.

- Include documentation for operational events/tests and describe under "comments" at end of form.
- Send completed forms to the NERC Regional Contact (RNC) and NERC operational and support leads.

Promptly notify NERC regional contact of compliance questions or concerns.

	NCR#	TOP				Regional
Plant			BA/PC/RC	то/тр	Dispatch	Entity
Athens	07154		NYISO	Nat'l Grid	Nat'l Grid	
	04010	AEP/ERCOT				Texas RE
Barney M Davis U1		CFR00075	ERCOT	AEP	QSE-Twin Eagle (SQ9)	
	04009	AEP/ERCOT				Texas RE
Barney Davis LLC		CFR00075	ERCOT	AEP	QSE-Twin Eagle (SQ <u>9)</u>	
Brandon Shores	11308		PJM	BGE	Tenaska	
Brunner Island	11362		MLA	PPL	Tenaska	
Camden	00838		PJM	PSEG	EDF	
	05329		Northwestern			
Colstrip			Corp (CAISO is RC)	Northwestern Corp	Northwestern Corp.	
Dartmouth	02922		ISO-NE	Eversource	ISO-NE	
	04090	AEP/ERCOT				Texas RE
Laredo		CFR00075	ERCOT	AEP	QSE-Twin Eagle (SQ9)	
Lower Mount	11362					
Bethel			PJM	PPL	EDF	
Martins Creek	11362		MIR	PPL	EDF	
Millennium	07144		ISO-NE	Nat'l Grid	Nat'l Grid	
Montour	11362		PJM	PPL	Tenaska	
Newark Bay	00838		PJM	PSEG	EDF	
	04106	AEP/ERCOT				Texas RE
Nueces Bay		CFR00075	ERCOT	AEP	QSE-Twin Eagle (SQ9)	
Pedricktown	00838		PJM	ACE	EDF	
Susquehanna	00889		PJM	PPL	Tenaska	
Wagner	11308		MIA	BGE	Tenaska	

Yes No

Did the station operate during this month?

Yes No

New Personnel

Were there any new personnel?

If "Yes" above, was Monique Scott contacted to insure people are in LMS

Training Rosters

- Any changes to control room operators (CROs) or supervisors?
 - If "Yes" above, training rosters for TNT001, 3, 5, 6, 7 and 8 revised before new personnel start dates?

Any changes to personnel dealing with batteries of protective relays (including contractors			Any changes to personnel dealing with batteries or protective relays (including contractors)?
---	--	--	---

If "Yes" above, training rosters for TNT010, 011, revised as appropriate? NOTE: New personnel cannot operate units until trained in TNT001 & TNT003

Supervisors can operate units at non-bargaining unit plants (e.g. Raven), not just CROs

PNC Checklist (cont'd)

	Ye	s No	-	-	-
		aining			
4			TNT 001	NERC COM-002 R3, Three-part communications - anyone in operations	
			TNT 003	NERC VAR-002 - Voltage control training - control room operators and supervisors	
			TNT 005	Introduction to NERC - All employees	
			TNT 007	Winter readiness - typically anyone other than administrative	
			TNT 008	Protection System misoperation identification and correction –	
	_			CROs, relay techs, and supervisors	
			TNT 010	Training for people performing battery maintenance (including contractors)	
			TNT 011	Training for people performing relay maintenance (including contractors)	
			TNT 012	Operational Functionality of Protection Systems & Remedial Action Schemes (RAS)	
				Was all training completed per LMS?	
	DA	L 001 T			
				-requency Response in the ERCOT Region. Topaz plants only r settings correct? (R6)	
				r in service at all times? (R7)	
				re a Governor status change?	
			lt "Y∈	es" for the status change question above, was ERCOT notified within 30 minutes? (R8)	
	BA	L-005-0.	2b, Automatic	Generation Control in the ERCOT Region. Topaz plants only	
			Collect a	nnual AEP Meter calibration: (CFR75-R1.2-AEP) Next Due	
		NA 001 3	Communicat	tions.	
]	3, Communicat	are any changes or modification plans affecting communication paths to BA and TOP? (R8)	
				ere any changes or modification plans affecting communication paths to BA and TOP? (Ko) es" above, was the communication path documentation updated?	
			11 16	above, was the communication path documentation updated:	
			Were the	ere any failures of normal or backup communication means with BA or TOP? (R11)	
			lf "Y∈	s" above, were events reported to Dispatch?	
		NA 002 /	Onersting D	ner annal Campunitations Destande	
				ersonnel Communications Protocols Operating Instruction received during an emergency from the BA, RC or TOP? (R6)	
				es" above, was three-part communication used?	
			11 16	above, was three-part tollinum dation used:	
	EC	P-004-4	Event Report	ing	
			TE-NERC	-202 Attachments A and C information up-to-date? (R1)	
			Were the	ere any reportable events per TE-NERC-202 para 6.1? (R2)	
	_	_	17.052		

PNC Checklist (cont'd)

_		
FAC	-008-3, Fa	<u>cility Ratings</u>
		Were there any temporary, major, electrical derates (MVA, requiring an outage to address)? (R1, R2)
		If "Yes" above, did you report these to the RNC?
		Was there a request for FAC-008 data from the PC, RC, TO, TOP or TP? (R7 & R8)
		If "Yes" above, was the information received by the requesting entity?

Yes No									
IRO-001-4, Reliability Coordination – Responsibilities, and TOP-001-4, Transmission Operations									
	If "No" above, provide remarks in comments section explaining why not								
IRO-010-2, Reliability Coordinator Data Specification and Collection, and TOP-003-3, Operational Reliability Data									
	Were there any data conflicts or data requests? Note: data was provided to RC/BA/TOP per their specification								
	through Talen Asset Management? (IRO-010 R3, TOP-003 R5)								
MOD-025-2,	Real and Reactive Power Capability Verification								
	Tests run this month and reported to RNC? Next test due (R1 & R2)								
	Were there any changes affecting real or reactive power ≥10% and expected to last ≥6 months?								
	If "Yes" above, identify the retest schedule for MOD-025: change date, test date								
	Were test results reviewed and submitted (w/i 90 days) to the Region? Submittal date								
MOD-026-1,	Excitation System Model Verification								
	Tests run this month and reported to RNC? Next test due (R2)								
	Were there any changes to excitation system (e.g. set pts, gains, rating, time const., PSS tuning)?								
	If "Yes" above, identify the retest schedule for MOD-026: change date, test date								
	Did you receive from the TP concerns about or a rejection of the MOD-026 test report?								
	If "Yes" above, was a response received by the TP within 90 days? (R3)								

PNC Checklist (cont'd)

Yes	No □ □	Performed Cyber Security Awareness activities (e.g. attend CIP meetings, posters, plant-wide email)? If "Yes", has evidence been submitted? If "No", explain
		All new contractors and new employees with access to Cyber Assets that could affect generation reviewed the site's Cyber Security Incident Response procedure (TE-NERC-307-CSIR-ALL)? If "No", explain
		Was there a suspected or actual security event related to plant physical or cyber assets? If "Yes", were events reported per the site's Cyber Security Incident Response Plan (TE-NERC-308-CSIR-CR)? If "Yes", are there any follow-up work activities required?
		Were Transient Cyber Assets used on BES Cyber Systems (control systems, relays, etc)?
		(reference TE-NERC-218) If "Yes", were the checklists signed, dated and properly filed? If "Yes", was the SharePoint log updated?
		Were Removable Media used on BES Cyber Systems? (reference TE-NERC-218) If "Yes", were the checklists signed, dated and properly filed? If "Yes", was the SharePoint log updated?
		Were there any changes to the plant control system network or firewalls that may require an update to
		documentation? If "Yes", are the documentation updates complete? If "No", explain
		Are there any <u>upcoming</u> changes to the plant control system network that may require an update to documentation or firewall configuration (reference TE-NERC-217)? If "Yes", what is the anticipated time frame for the change
		Were there any changes to the plant physical protection controls that may require and update to procedures
		or documentation (reference TE-NERC-309)? If "Yes", are the updates complete? If "No", explain
		Did you conduct the quarterly physical assessment and complete the documentation for this quarter? (reference TE-NERC-309)? If "Yes", were there any deficiencies noted?

Forward Together • ReliabilityFirst

RNC Checklist

Talen Energy NERC RNC Monthly Checklist Menu

Rev. 12, Effective for January 2020 reports

Plant:_____

Month and Year Being Reported: _____/____

Instructions

-PERS

- Form is to be printed out and filled out each month.

- Include documentation for operational events/tests, and describe under "comments" at end of form.

- Send completed forms to the NERC Regional Contact (RNC) and NERC operational and support leads.

Promptly notify NERC regional contact of compliance questions or concerns.

÷

Plant	NCR#	TOP/BA/TP/RC	то	Dispatch
Athens	07154	NYISO	Nat'l Grid	Nat'l Grid
Barney M Davis U1	04010	ERCOT (AEP is TOP)	AEP	QSE-Twin Eagle
Barney M Davis LP	04009	ERCOT (AEP is TOP)	AEP	QSE-Twin Eagle
Brandon Shores	11308	PJM	BGE	Tenaska
Brunner Island	11362	MIA	PPL	Tenaska
Camden	00838	PJM	PSEG	EDF
Colstrip	05329	Northwestern Corp (CAISO is RC)	Northwestern Corp	Northwestern Corp
Dartmouth	02922	ISO-NE	Eversource	ISO-NE
Laredo	04090	ERCOT (AEP is TOP)	AEP	QSE-Twin Eagle
Lower Mount Bethel	11362	PJM	PPL	EDF
Martins Creek	11362	PJM	PPL	EDF
Millennium	07144	ISO-NE	Nat'l Grid	Nat'l Grid
Montour	11362	PJM	PPL	Tenaska
Newark Bay	00838	PJM	PSEG	EDF
Nueces Bay	04106	ERCOT (AEP is TOP)	AEP	QSE-Twin Eagle
Pedricktown	00838	MIA	ACE	EDF
Susquehanna	00889	PJM	PPL	Tenaska
Wagner	11308	PJM	BGE	Tenaska

Yes No

New Personnel

U Were there any new personnel?

If "Yes" above, was Monique Scott contacted to ensure new personnel are in LMS

Yes No N/A

Training Rosters

Any changes to control room operators (CROs) or supervisors?

- If "Yes" above, training rosters for TNT001, 3, 5, 6, 7 and 8 revised before new personnel start dates?
- Any changes to personnel dealing with batteries or protective relays (including contractors)?

If "Yes" above, training rosters for TNT010, 011, revised as appropriate?

NOTE: New personnel cannot operate units until trained in TNT001 & TNT003

Supervisors can operate units at non-bargaining unit plants (e.g. Raven), not just CROs

RNC Checklist (cont'd)

Yes No

Training

Is all Training up to date per LMS requirements? Comments:

BAL-001-TRE-1, Primary Frequency Response in the ERCOT Region. Topaz plants only

Are there any actionable items required by the PNC, RNC or the Plant to complete? Comments:

COM-001-3, Communications

Are there any actionable items required by the PNC, RNC or the Plant to complete? Comments:

COM-002-4, Operating Personnel Communications Protocols

Are there any actionable items required by the PNC, RNC or the Plant to complete? Comments:

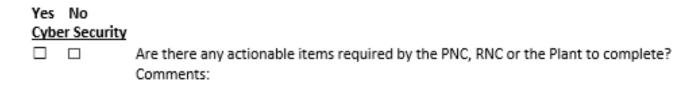
EOP-004-4, Event Reporting

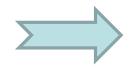
Are there any actionable items required by the PNC, RNC or the Plant to complete? Comments:

FAC-008-3, Facility Ratings

Are there any actionable items required by the PNC, RNC or the Plant to complete? Comments:

IRO-001-4, Reliability Coordination - Responsibilities, and TOP-001-4, Transmission Operations


Are there any actionable items required by the PNC, RNC or the Plant to complete? Comments:


IRO-010-2, Reliability Coordinator Data Specification and Collection, and TOP-003-3, Operational Reliability Data

Are there any actionable items required by the PNC, RNC or the Plant to complete? Comments:

RNC Checklist (cont'd)

Name

Date

RNC Checklist Revisions

Rev. 9	06/13/19	Wording/formatting changed to support ease of use and to build in internal controls.
Rev. 13	02/06/2020	 -Moved CIP Section to its own page and added line items relative to removable media & TCA. -Added CIP Procedure reference. -Line items reorganized per standard with appropriate R #'s added to line items. -N/A category removed. -Identified each Plant's TO/TOP/BA/RC/DP -Formatting changes

RNC Checklist

- Revision 9 to Revision 13 illustrates that Checklist is maturing as we learn and define responsibilities and implementation
 - Add notes for clarification
 - Remove information that is not required

Pyramid: Information & Communication

Information and Communication

Communication

- **Biweekly**: NERC meetings with Operational and NERC teams
- Monthly: Checklist Review Meetings with NERC Senior Manager and RNCs

 Important meeting to ensure information is effectively communicated from implementing teams to NERC management and throughout executive management, as needed

- These small informal one-on-one discussions bring out open and honest dialogue on the state of the program...discussions are also a driver to a lot of positive program changes
- Provides NERC training/mentoring opportunity for implementing team
- Quarterly: Senior Management NERC Committee Meetings (SMNC Meetings)
 Note: These meetings provide a common thread of communications from plant level to Senior Management level....consistent messaging of Information provides support for the internal controls

Information and Communication (cont'd)

Information

• Messaging information is a strong internal control

> Talen Works hard to provide Information that is------

- Consistent: the message at the Ops plant meeting is the same at the SMNC meeting
- **Clear:** NERC jargon is intentionally minimized in meetings
 - Example: "FAC-008 looks for the weakest link in the electrical system from the generator to the Point of Interconnection"
- **Repeatable:** Repeat the same message across the organization and actively following-up to insure understanding of the message. Take every opportunity to **repeat how internal controls** are incorporated into daily operations. Treat it as a campaign requiring long-term engagement.

Summary

FAC-008 Internal Controls

- Use the Pyramid as a guide...picture clarifies each member's position in program
- Be Active with internal controls...things are always changing
- Be Clear with internal controls messaging
- Be **Consistent** with internal controls expectations
- Most of all, make FAC-008 internal controls easy to implement for ops personnel

QUESTIONS

